5 research outputs found

    The impact of bone mineral density and disc degeneration on shear strength and stiffness of the lumbar spine following laminectomy

    Get PDF
    Purpose Laminectomy is a standard surgical procedure for elderly patients with symptomatic degenerative lumbar stenosis. The procedure aims at decompression of the affected nerves, but it also causes a reduction of spinal shear strength and shear stiffness. The magnitude of this reduction and the influence of bone mineral density (BMD) and disc degeneration are unknown. We studied the influence of laminectomy, BMD, and disc degeneration on shear force to failure (SFF) and shear stiffness (SS). Methods Ten human cadaveric lumbar spines were obtained (mean age 72.1 years, range 53-89 years). Laminectomy was performed either on L2 or L4, equally divided within the group of ten spines. BMD was assessed by dual X-ray absorptiometry (DXA). Low BMD was defined as a BMD value below the median. Intervertebral discs were assessed for degeneration by MRI (Pfirrmann) and scaled in mild and severe degeneration groups. Motion segments L2-L3 and L4-L5 were isolated from each spine. SFF and SS were measured, while loading simultaneously with 1,600 N axial compression. Results Low BMD had a significant negative effect on SFF. In addition, a significant interaction between low BMD and laminectomy was found. In the high BMD group, SFF was 2,482 N (range 1,678-3,284) and decreased to 1,371 N (range 940-1,886) after laminectomy. In the low BMD group, SFF was 1,339 N (range 909-1,628) and decreased to 761 N (range 561-1,221). Disc degeneration did not affect SFF, nor did it interact with laminectomy. Neither low BMD nor the interaction of low BMD and laminectomy did affect SS. Degeneration and its interaction with laminectomy did not significantly affect SS. Conclusions In conclusion, low BMD significantly decreased SFF before and after lumbar laminectomy. Therefore, DXA assessment may be an important asset to preoperative screening. Lumbar disc degeneration did not affect shear properties of lumbar segments before or after laminectomy. © 2012 Springer-Verlag

    Proposal for the regulatory mechanism of Wolff's law

    No full text
    It is currently believed that the trabecular structure in bone is the result of a dynamic remodeling process controlled by mechanical loads. We propose a regulatory mechanism based on the hypothesis that osteocytes located within the bone sense mechanical signals and that these cells mediate osteoclasts and osteoblasts in their vicinity to adapt bone mass. A computer-simulation model based on these assumptions was used to investigate if the adaptation of bone, in the sense of Wolff's law, and remodeling phenomena, as observed in reality, can be explained by such a local control process. The model produced structures resembling actual trabecular architectures. The architecture transformed after the external loads were changed, aligning the trabeculae with the actual principal stress orientation, in accordance with Wolff's trajectorial hypothesis. As in reality, the relative apparent density of the structure depended on the magnitude of the applied stresses. Osteocyte density influenced the remodeling rate, which also is consistent with experimental findings. Furthermore, the results indicated that the domain of influence of the osteocytes affects the refinement of the structure as represented by separation and thickness of the struts. We concluded that the trabecular adaptation to mechanical load, as described by Wolff, can be explained by a relatively simple regulatory model. The model is useful for investigating the effects of physiological parameters on the development, maintenance, and adaptation of bone. [Journal Article; In English; United States

    The regulation of functional adaptation in trabecular bone

    Get PDF

    A physiological approach to the simulation of bone remodeling as a self-organizational control process

    Get PDF
    Although the capacity of bone to adapt to functional mechanical requirements has been known for more than a century, it is still unclear how the bone adaptation processes are regulated. The authors hypothesize that osteocytes are sensitive to mechanical loading and control the regulation of bone mass in their environment. Recently, simulation models of such a process were developed, using the finite element method. It was discovered that these models produce discontinuous structures, not unlike trabecular bone. However, it was also found that severe discontinuities violate the continuum assumption underlying the finite element method and that the solutions were element mesh dependent. The authors have developed a simulation model (which is physiologically and mechanically more consistent) which maintains the self-organizational characteristics but does not produce these discontinuities. This was accomplished by separating the sensor density and range of action from the mesh. The results clearly show that predicted trabecular morphology, i.e. sizes and branching of struts, depend on the actual relationship between local load, sensor density and range of influence. The authors believe that the model is suitable to study the relationship between trabecular morphology and load and can also explain adaptation of morphology, in the sense of `Wolff's law
    corecore