121 research outputs found
A Delphi Study of RFID Applicable Business Processes and Value Chain Activities in Retail
For this research we use Delphi technique to identify the key business processes and value chain activities that are improved by RFID. Our Delphi study involves 74 experts from different domains such as consulting, retail, academia, and third party service providers. We also explored whether there is any difference in expert perceptions about RFID applicable business processes and value chain activities across different business associations
Outdoor performance of a reflective type 3D LCPV system under different climatic conditions
Concentrating sunlight and focusing on smaller solar cells increases the power output per unit solar cell area. In the present study, we highlight the design of a low concentrating photovoltaic (LCPV) system and its performance in different test conditions. The system essentially consists of a reflective type 3.6× cross compound parabolic concentrator (CCPC) designed for an acceptance angle of ± 30°, coupled with square shaped laser grooved buried contact (LGBC) silicon solar cells. A heat exchanger is also integrated with the PV system which extracts the thermal energy rejected by the solar cells whilst maintaining its temperature. Indoor characterization is carried out to evaluate the system performance under standard conditions. Results showed a power ratio of 3.12 and an optical efficiency of 73%. The system is placed under outdoor environment on a south facing roof at Penryn, UK with a fixed angular tilt of 50°. The high angular acceptance of the system allows collection of sunlight over a wider range. Results under different climatic conditions are presented and compared with a non-concentrating system under similar conditions. On an average, the LCPV system was found to collect an average of 2.54 times more solar energy than a system without the concentrator
A Delphi Study of RFID Applicable Business Processes and Value Chain Activities in Retail
For this research we use Delphi technique to identify the key business processes and value chain activities that are improved by RFID. Our Delphi study involves 74 experts from different domains such as consulting, retail, academia, and third party service providers. We also explored whether there is any difference in expert perceptions about RFID applicable business processes and value chain activities across different business associations
Quality of Treatment Research Designs: Lessons from a Systematic Review on CILT for Aphasia
The importance of evidence-based clinical practice has led to an effort by ASHA to develop a series of systematic reviews of treatment research to serve as a resource for its members. The first review has centered on constraint-induced language therapy for aphasia. The procedures implemented in the systematic review pertaining to the quality of treatment research investigations have the potential to incite controversy and discussion in the community of aphasia treatment researchers. This presentation is designed to engage the audience in a discussion that will influence the format of study appraisal guidelines for ongoing systematic reviews
Challenges and opportunities for quantifying roots and rhizosphere interactions through imaging and image analysis
The morphology of roots and root systems influences the efficiency by which plants acquire nutrients and water, anchor themselves and provide stability to the surrounding soil. Plant genotype and the biotic and abiotic environment significantly influence root morphology, growth and ultimately crop yield. The challenge for researchers interested in phenotyping root systems is, therefore, not just to measure roots and link their phenotype to the plant genotype, but also to understand how the growth of roots is influenced by their environment. This review discusses progress in quantifying root system parameters (e.g. in terms of size, shape and dynamics) using imaging and image analysis technologies and also discusses their potential for providing a better understanding of root:soil interactions. Significant progress has been made in image acquisition techniques, however trade-offs exist between sample throughput, sample size, image resolution and information gained. All of these factors impact on downstream image analysis processes. While there have been significant advances in computation power, limitations still exist in statistical processes involved in image analysis. Utilizing and combining different imaging systems, integrating measurements and image analysis where possible, and amalgamating data will allow researchers to gain a better understanding of root:soil interactions
A novel absorptive/reflective solar concentrator for heat and electricity generation: an optical and thermal analysis.
The crossed compound parabolic concentrator (CCPC) is one of the most efficient non-imaging solar concentrators used as a stationary solar concentrator or as a second stage solar concentrator. In this study, the CCPC is modified to demonstrate for the first time a new generation of solar concentrators working simultaneously as an electricity generator and thermal collector. The CCPC is designed to have two complementary surfaces, one reflective and one absorptive, and is named as an absorptive/reflective CCPC (AR-CCPC). Usually, the height of the CCPC is truncated with a minor sacrifice of the geometric concentration. These truncated surfaces rather than being eliminated are instead replaced with absorbent surfaces to collect heat from solar radiation. The optical efficiency including absorptive/reflective part of the AR-CCPC was simulated and compared for different geometric concentration ratios varying from 3.6× to 4×. It was found that the combined optical efficiency of the AR-CCPC 3.6×/4× remained constant and high all day long and that it had the highest total optical efficiency compared to other concentrators. In addition, the temperature distributions of AR-CCPC surfaces and the assembled solar cell were simulated based on those heat flux boundary conditions. It was shown that the addition of a thermal absorbent surface can increase the wall temperature. The maximum value reached 321.5 K at the front wall under 50° incidence. The experimental verification was also adopted to show the benefits of using absorbent surfaces. The initial results are very promising and significant for the enhancement of solar concentrator systems with lower concentrations
Coupled simulation of performance of a crossed compound parabolic concentrator with solar cell
An optimal installation of a compound parabolic concentrator (CCPC) into a scalable solar thermoelectrics and photovoltaics system is desirable by applying analytical tools to improve the optical and thermal performance of a CCPC with a solar cell. In this paper, the optical and thermal performances of an isolated CCPC with solar cell are investigated by employing commercial software ‘ANSYS CFX 15.0’ with a coupled optical grey and multiphysics model. Numerical results are validated against the experimental data at various incidence angles, especially for the optical concentration ratio and optical efficiency. Results confirm that ‘ANSYS CFX’ is an effective numerical tool for determining correctly both the optical and thermal behaviour of CCPC. The very important finding is a highest temperature core in the silicon layer of solar cell which may be responsible for a solar cell to work properly. The limitation of the work is that the electric performance of the solar cell is not involved and the simulations are steady
Ba6−3x Nd8+2x Ti18O54 Tungsten Bronze: A New High-Temperature n-Type Oxide Thermoelectric
Semiconducting Ba6−3x Nd8+2x Ti18O54 ceramics (with x = 0.00 to 0.85) were synthesized by the mixed oxide route followed by annealing in a reducing atmosphere; their high-temperature thermoelectric properties have been investigated. In conjunction with the experimental observations, atomistic simulations have been performed to investigate the anisotropic behavior of the lattice thermal conductivity. The ceramics show promising n-type thermoelectric properties with relatively high Seebeck coefficient, moderate electrical conductivity, and temperature-stable, low thermal conductivity; For example, the composition with x = 0.27 (i.e., Ba5.19Nd8.54Ti18O54) exhibited a Seebeck coefficient of S 1000K = 210 µV/K, electrical conductivity of σ 1000K = 60 S/cm, and thermal conductivity of k 1000K = 1.45 W/(m K), leading to a ZT value of 0.16 at 1000 K
Shaping 3D root system architecture
Plants are sessile organisms rooted in one place. The soil resources that plants require are often distributed in a highly heterogeneous pattern. To aid foraging, plants have evolved roots whose growth and development are highly responsive to soil signals. As a result, 3D root architecture is shaped by myriad environmental signals to ensure resource capture is optimised and unfavourable environments are avoided. The first signals sensed by newly germinating seeds — gravity and light — direct root growth into the soil to aid seedling establishment. Heterogeneous soil resources, such as water, nitrogen and phosphate, also act as signals that shape 3D root growth to optimise uptake. Root architecture is also modified through biotic interactions that include soil fungi and neighbouring plants. This developmental plasticity results in a ‘custom-made’ 3D root system that is best adapted to forage for resources in each soil environment that a plant colonises
Virological failure and development of new resistance mutations according to CD4 count at combination antiretroviral therapy initiation
Objectives: No randomized controlled trials have yet reported an individual patient benefit of initiating combination antiretroviral therapy (cART) at CD4 counts > 350 cells/μL. It is hypothesized that earlier initiation of cART in asymptomatic and otherwise healthy individuals may lead to poorer adherence and subsequently higher rates of resistance development. Methods: In a large cohort of HIV-positive individuals, we investigated the emergence of new resistance mutations upon virological treatment failure according to the CD4 count at the initiation of cART. Results: Of 7918 included individuals, 6514 (82.3%), 996 (12.6%) and 408 (5.2%) started cART with a CD4 count ≤ 350, 351-499 and ≥ 500 cells/μL, respectively. Virological rebound occurred while on cART in 488 (7.5%), 46 (4.6%) and 30 (7.4%) with a baseline CD4 count ≤ 350, 351-499 and ≥ 500 cells/μL, respectively. Only four (13.0%) individuals with a baseline CD4 count > 350 cells/μL in receipt of a resistance test at viral load rebound were found to have developed new resistance mutations. This compared to 107 (41.2%) of those with virological failure who had initiated cART with a CD4 count < 350 cells/μL. Conclusions: We found no evidence of increased rates of resistance development when cART was initiated at CD4 counts above 350 cells/μL. HIV Medicin
- …