18 research outputs found
A Cryosurgical Approach to Lung Cancer
Lung cancer is the second leading cause of death in the United Statesi, presenting the need for more refined treatment options than traditional invasive surgery and chemo- and radiation therapy. This study investigates the use of less-invasive cryosurgery to effectively freeze and kill a cancerous lung tumor, 3mm in diameter, while minimizing peripheral tissue damage. A single, liquid-nitrogen filled probe is inserted into a lung tumor and maintained at a constant temperature of -190?C. The freezing front is monitored to ensure cancerous cell death and prevent excessive damage to the surrounding healthy tissue. Based on data obtained by analyzing probe temperature, contact time and model sensitivity to variations in biomaterial properties, recommendations are made for surgical implementation: an initial contact time of 6 minutes followed by successively shorter application times. Additionally, further study designs are discussed to improve the quality of this treatment method and to ensure target outcomes with respect to tumor cell death and protection of healthy lung tissue
Displacement of native Patagonian freshwater silverside populations (Odontesthes hatcheri, Atherinopsidae) by introgressive hybridization with introduced O. bonariensis
The Patagonian silverside Odontesthes hatcheri is a native fish restricted to streams and lakes of Patagonia (Argentina and Chile). Stocking programs to enhance recreational fisheries in man-made reservoirs have introduced a nonnative, closely-related species (the pejerrey O. bonariensis) in Patagonia almost a century ago, and yet little is known about the invasiveness of this species. To evaluate the impact of these introductions we analyze genetic data (microsatellite markers and mitochondrial DNA) to quantify the incidence of hybridization between these two species and assess potential effects on native population structure. Phylogeographic analyses reveal weak geographic differentiation among populations of O. hatcheri, in agreement with previous studies for other freshwater fishes in Patagonia strongly influenced by Quaternary glaciations and hydrographic basin changes since the last glaciation. However, many populations have unique genetic pools. In several areas, introductions resulted in extensive hybridization, with high frequencies of F2 and backcrossed hybrids in natural populations, and in some cases O. bonariensis has completely displaced the native populations. The negative impact of these introductions on native populations is correlated to temperature, a critical parameter in the face of global warming, suggesting that invasiveness of O. bonariensis may increase in the future. Our results advise against continuing stocking programs to preserve the integrity of natural populations of the Patagonian silverside.Fil: Rueda, Eva Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral; ArgentinaFil: Mullaney, Kerry A.. The George Washington University; Estados UnidosFil: Conte-Grand, Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Habit, Evelyn M.. Universidad de Concepción and Centro de Investigaciones en Ecosistemas Patagónicos; ChileFil: Cussac, Victor Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Ortí, Guillermo. The George Washington University; Estados Unido
Recommended from our members
Abstract 3931: BRD4, BRD3, NSD3, and ZNF532 fusions in histologies beyond NUT carcinomas: Investigation of a large pan-cancer cohort
Abstract Background: NUT rearrangements drive NUT carcinomas (NCs), which are rare, poorly differentiated tumors with a survival from diagnosis of ~6-7 months. Common NUT fusion partners (NCFPs) include BRD4, BRD3, NSD3, and ZNF532, which are associated with epigenetic changes leading to tumor growth. Recent clinical trials have aimed to address NCs, but little is known about fusions involving NCFPs in other histologies. We characterized NCFPs in a large, pan-cancer cohort. Methods: The MSK-IMPACT (DNA sequencing; n=71,423) and MSK-Fusion (RNA sequencing; n=10,897) clinical cohorts were mined to identify patients (pts) with all forms of structural variants (SVs) involving NCFPs, detected between April, 2015 and June, 2022. The targeted NGS panels included BRD4 and NSD3 only; detection of BRD3 and ZNF532 SVs was possible for fusions with a partner present on either panel. SVs were manually reviewed to identify in-frame fusions with oncogenic potential if critical domains present in NC fusions were conserved. Pts were followed through July 2022 and manual chart review enabled assessment of treatment history and clinical outcomes. Results: SVs involving NCFP genes were detected in 182 (BRD4=110, NSD3=61, BRD3=8 and ZNF532=3) pts (0.002%). Putative NCFP fusions not involving any of the NUT gene family members comprised a total of 20 fusions with likely oncogenic potential including 11 with BRD4 (55%), 5 with NSD3 (25%), 3 with ZNF532 (15%), and 1 with BRD3 (5%). BRD4::NOTCH3 and ZNF532::MALT1 were the most enriched fusions, present in 3 samples each. The most common histologies were breast (3 ductal; 1 lobular), lung (2 squamous cell carcinoma, 1 adenocarcinoma and 1 mixed histology), and colon and esophageal adenocarcinoma (2 samples each). Median age at diagnosis was 62. 11 (55%) pts were female and 9 (45%) were male. 13 (65%) pts ultimately were diagnosed with stage IV disease and had a median overall survival from stage IV diagnosis of 2.5 years (95% CI: 1.41, NR). DNA sequencing in 19/20 tumors revealed a mean tumor mutational burden (TMB) of 5.0 mut/Mb including 15 with low TMB (10). No tumor showed microsatellite instability (MSI-high). TP53 mutations were the most common co-alteration, found in 11 (58%) cases. 18/20 pts received systemic therapy; 18 (90%) received cytotoxic chemotherapy and/or mAb therapy, including 13 (65%) who received a platinum. 8 pts (40%) received immunotherapy (IO), and 4 (20%) received small molecule inhibitors. No pts received BET inhibitors. Among pts who received IO, median time to treatment discontinuation was 64 days (95% CI: 20, NR). Conclusion: Tumor sequencing from a large cohort reveals potential oncogenic fusions involving BRD4, BRD3, NSD3, and ZNF532 across multiple histologies. Further biological characterization of their oncogenicity and potential targetability is warranted. Citation Format: Ian R. Nykaza, Christopher A. Febres-Aldana, Sabrina T. Lin, Ryma Benayed, Kerry Mullaney, Emiliano Cocco, Alexia Iasonos, Marc Ladanyi, Alexander E. Drilon, Yonina R. Murciano-Goroff. BRD4, BRD3, NSD3, and ZNF532 fusions in histologies beyond NUT carcinomas: Investigation of a large pan-cancer cohort. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 3931
Malignant undifferentiated epithelioid neoplasms with MAML2 rearrangements: A clinicopathologic study of seven cases demonstrating a heterogenous entity
Among mesenchymal tumors, MAML2 gene rearrangements have been described in a subset of composite hemangioendothelioma and myxoinflammatory fibroblastic sarcoma (MIFS). However, we have recently encountered MAML2-related fusions in a group of seven undifferentiated malignant epithelioid neoplasms that do not fit well to any established pathologic entities. The patients included five males and two female, aged 41–71 years old (median 65 years). The tumors involved the deep soft tissue of extremities (hip, knee, arm, hand), abdominal wall, and the retroperitoneum. Microscopically, the tumors consisted of solid sheets of atypical epithelioid to histiocytoid cells with abundant cytoplasm. Prominent mitotic activity and necrosis were present in 4 cases. In 3 cases, the cells displayed hyperchromatic nuclei or conspicuous macronucleoli, and were admixed with background histiocytoid cells and a lymphoplasmacytic infiltrate. By immunohistochemistry (IHC), the neoplastic cells had a nonspecific phenotype. On targeted RNA sequencing, MAML2 was the 3′ partner and fused to YAP1 (4 cases), ARHGAP42 (2 cases), and ENDOD1 (1 case). Two cases with YAP1::MAML2 harbored concurrent RAF kinase fusions (RBMS3::RAF1 and AGK::BRAF, respectively). In 2 cases with targeted DNA sequencing, mutations in TP53, RB1 and PTEN were detected in 1 case, and PDGFRB mutations, CCNE1 amplifications and CDKN2A/2B deletion were detected in another case, which showed strong and diffuse PDGFRB expression by IHC. Of the 4 cases with detailed clinical history (median follow-up period 8 months), three developed distant metastatic disease (one of which died of disease); one case remained free of disease 3 years following surgical excision. In conclusion, we describe a heterogeneous series of MAML2-rearranged undifferentiated malignant epithelioid neoplasms, a subset of which may overlap with a recently described MIFS variant with YAP1::MAML2 fusions, further expanding the clinicopathologic spectrum of mesenchymal neoplasms with recurrent MAML2 gene rearrangements
Recommended from our members
Colorectal Carcinomas Containing Hypermethylated MLH1 Promoter and Wild-Type BRAF/KRAS Are Enriched for Targetable Kinase Fusions
Kinase fusions are rare and poorly characterized in colorectal carcinoma, yet they present unique opportunities for targeted therapy. In this study, we characterized kinase fusions from patients with advanced colorectal carcinoma who had MSK-IMPACT testing of their tumors between January 2014 and June 2018. Patients were analyzed for the presence of fusions, microsatellite instability (MSI), and
mutations. Mismatch repair (MMR), IHC, and promoter hypermethylation status of MLH1 (MLH1ph) in microsatellite instability-high (MSI-H) colorectal carcinoma with fusions were investigated. Fusion transcripts were confirmed using a targeted RNA-seq panel assay. Of 2,314 colorectal carcinomas with MSK-IMPACT testing, 21 harbored kinase fusions. Overall 57% (12/21) of colorectal carcinoma fusions were MSI-H/MMR-D. Loss of MLH1 and MLH1ph was confirmed in all 12 and all 10 cases with available material, respectively. Fusions were present in 5% of MSI-H/MMR-D colorectal carcinoma compared with 0.4% of MSS/MMR-P colorectal carcinoma (
< 0.001) and 15% of MSI-H/MMR-D colorectal carcinoma with wild-type
. Of 24 total MLH1-deficient colorectal carcinomas with MLH1ph and wild-type
, 10 (42%) harbored kinase fusions. Kinase fusions in MSI-H colorectal carcinoma were associated with sporadic MLH1ph rather than with Lynch syndrome, and these patients may be eligible for kinase inhibitors, particularly following resistance or toxicity in response to immunotherapy. These findings identify a molecular subset of colorectal carcinoma with kinase fusions that may be responsive to kinase inhibitors.
A high frequency of targetable kinase fusions in
wild-type, MSI-H colorectal carcinoma offers a rationale for routine screening to identify patients with colorectal carcinoma with kinase fusions that may be responsive to kinase inhibitors.
Recommended from our members
P2RY8-CRLF2 Fusion-Positive Acute Myeloid Leukemia With Myelodysplasia-Related Changes: Response to Novel Therapy
Recommended from our members
Characterization of Ntrk fusions and Therapeutic Response to Ntrk Inhibition in Hematologic Malignancies
Abstract
Chromosomal rearrangements involving the neurotrophic receptor tyrosine kinases NTRK1-3 produce oncogenic fusions in a wide variety of adult and pediatric cancers. Although the frequency of NTRK fusions in most cancers is 7,000 patients with hematologic malignancies and characterize their signal transduction, transforming properties, and response to larotrectinib in vitro and in an AML patient and corresponding patient-derived xenograft (PDX) in vivo .
We performed targeted RNA sequencing using the Foundation One Heme sequencing panel across 7,311 cases of hematologic malignancies and discovered 8 patients (0.11%) harboring NTRK fusions. Fusions occurred in patients with histiocytic (LMNA-NTRK1, TFG-NTRK1) and dendritic cell (TPR-NTRK1) neoplasms (n=2/78), ALL (ETV6-NTRK3; n=1/659) as well as two with AML (n=2/1201). While previous case reports have reported ETV6-NTRK3 fusions in ALL and AML, our cohort also included an ETV6-NTRK2 fusion previously unreported in AML. In addition, we detected two multiple myeloma patients with NTRK3 fusions (UBE2R2-NTRK3 and HNRNPA2B1-NTRK3; n=2/1859) which represent the first description of NTRK fusions in myeloma. The fusion breakpoints are predicted to create in-frame fusions containing the tyrosine kinase domain of each of the NTRK genes and Sanger sequencing of RT-PCR on available tissues confirmed this.
We next cloned 4 of these fusions and tested their transforming capacity in cytokine-dependent murine hematopoietic cells (Ba/F3 cells), which do not express endogenous Trk proteins. Despite equivalent levels of Trk expression, the transforming properties and auto-phosphorylation of each TRK fusion was distinct (A). The LMNA-NTRK1 and ETV6-NTRK2 fusions caused robust cytokine-independent growth. In contrast, additional NTRK fusions in which the 5' partner lacked classic oligomerization domains resulted in slower transformation (UBE2R2-NTRK3 fusion)or no transformation (HNRNPA2/B1-NTRK3). Consistent with these different growth properties, each fusion activated PI3K-AKT signaling to differing degrees after cytokine withdrawal (B) . Finally, the cells that gained cytokine-independence were exquisitely sensitive to treatment with larotrectinib. In contrast, Ba/F3 cells transformed by BRAF V600E mutation were unresponsive to Trk inhibition (C).
The course of the above studies identified a patient with an ETV6-NTRK2 fusion AML. Using a PDX generated from this patient, we initiated treatment with larotrectinib (200mg/kg/day) after 8 weeks of transplantation when human myeloid leukemia engraftment reached a median of 15%. Larotrectinib treatment reduced human chimerism compared with mice receiving vehicle (although human myeloid leukemia cells persisted even with larotrectinib treatment- D). Consistent with the response of the AML PDX to Trk inhibition, treatment of the same patient with larotrectinib initiated under the FDA expanded access program resulted in clinical partial remission. This was due to eradication of the ETV6-NTRK2 mutant clone, which was sustained until outgrowth of a treatment refractory ETV6-MECOM clone resulted in progressive disease. FACS sorting and analysis of the AML revealed that each ETV6 fusion occurred in a distinct AML clone. Serial targeted RNA-seq analysis of bulk cells identified reduction of expression of the ETV6-NTRK2 fusion throughout the period of LOXO-101 treatment with concomitant increased expression of the ETV6-MECOM fusion (E).
We herein describe that NTRK fusions occur across patients with a wide variety of hematologic malignancies and are amenable to Trk inhibition. Further studies to evaluate the clonality of NTRK fusions across cancers and whether this is predictive of therapeutic response to Trk inhibition will be critical based on the case here. Nonetheless, the clinical response here in a refractory patient argues for the need for systematic evaluation of NTRK fusions despite their rarity across hematologic neoplasms.
Figure Figure.
Disclosures
Pavlick: Foundation Medicine: Employment. Watts: Jazz Pharmaceuticals: Consultancy, Speakers Bureau. Albacker: Foundation Medicine Inc.: Employment, Equity Ownership. Mughal: Foundation Medicine, Inc: Employment, Other: Stock. Ebata: LOXO Oncology: Employment. Tuch: LOXO Oncology: Employment. Ku: LOXO Oncology: Employment. Arcila: Archer: Honoraria; Raindance Tecnologies: Honoraria; Invivoscribe: Honoraria. Ali: Foundation Medicine, Inc: Employment, Other: Stock. Park: Amgen: Consultancy
Oncogenic TRK fusions are amenable to inhibition in hematologic malignancies
Rearrangements involving the neurotrophic receptor kinase genes (
NTRK1, NTRK2,
and
NTRK3
; hereafter referred to as TRK) produce oncogenic fusions in a wide variety of cancers in adults and children. Although TRK fusions occur in fewer than 1% of all solid tumors, inhibition of TRK results in profound therapeutic responses, resulting in Breakthrough Therapy FDA approval of the TRK inhibitor larotrectinib for adult and pediatric patients with solid tumors, regardless of histology. In contrast to solid tumors, the frequency of TRK fusions and the clinical effects of targeting TRK in hematologic malignancies are unknown. Here, through an evaluation for TRK fusions across more than 7,000 patients with hematologic malignancies, we identified TRK fusions in acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), histiocytosis, multiple myeloma, and dendritic cell neoplasms. Although TRK fusions occurred in only 0.1% of patients (8 of 7,311 patients), they conferred responsiveness to TRK inhibition in vitro and in vivo in a patient-derived xenograft and a corresponding AML patient with
ETV6-NTRK2
fusion. These data identify that despite their individual rarity, collectively, TRK fusions are present in a wide variety of hematologic malignancies and predict clinically significant therapeutic responses to TRK inhibition