43 research outputs found

    Transcriptional responses in the adaptation to ischaemia-reperfusion injury: a study of the effect of ischaemic preconditioning in total knee arthroplasty patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ischaemic preconditioning (IPC) has emerged as a method of reducing ischaemia-reperfusion injury. However, the complex mechanism through which IPC elicits this protection is not fully understood. The aim of this study was to investigate the genomic response induced by IPC in muscle biopsies taken from the operative leg of total knee arthroplasty patients in order to gain insight into the IPC mechanism.</p> <p>Methods</p> <p>Twenty patients, undergoing primary total knee arthroplasty, were randomly assigned to IPC (n = 10) and control (n = 10) groups. Patients in the IPC group received ischaemic preconditioning immediately prior to surgery. IPC was induced by three five-minute cycles of tourniquet insufflation interrupted by five-minute cycles of reperfusion. A muscle biopsy was taken from the operative knee of control and IPC-treated patients at the onset of surgery and, again, at one hour into surgery. The gene expression profile of muscle biopsies was determined using the Affymetrix Human U113 2.0 microarray system and validated using real-time polymerase chain reaction (RT-PCR). Measurements of C-reactive protein (CRP), erythrocyte sedimentation (ESR), white cell count (WCC), cytokines and haemoglobin were also made pre- and post-operatively.</p> <p>Results</p> <p>Microarray analysis revealed a significant increase in the expression of important oxidative stress defence genes, immediate early response genes and mitochondrial genes. Upregulation of pro-survival genes was also observed and correlated with a downregulation of pro-apoptotic gene expression. CRP, ESR, WCC, cytokine and haemoglobin levels were not significantly different between control and IPC patients.</p> <p>Conclusions</p> <p>The findings of this study suggest that IPC of the lower limb in total knee arthroplasty patients induces a protective genomic response, which results in increased expression of immediate early response genes, oxidative stress defence genes and pro-survival genes. These findings indicate that ischaemic preconditioning may be of potential benefit in knee arthroplasty and other musculoskeletal conditions.</p

    Chondral Lesion in the Hip Joint and Current Chondral Repair Techniques

    Get PDF
    This chapter gives a detailed review of the composition, structure and biomechanics of articular cartilage in the joint. W have looked at the most common types of cartilage lesions and at the existing methods of articular cartilage repair techniques in the hip joint. Articular cartilage is specialized hyaline cartilage which makes a firm, smooth and slippery surface that resists plastic deformation. It has a unique structure and mechanical properties that provide joints with a surface that combines low friction, shock absorption and wear resistance, while bearing large repetitive loads throughout an individual’s lifetime. Cartilage lesions in the hip are most common on the acetabular side and typically present as focal area of delamination or chondral flap. Joint preserving techniques are becoming increasingly common. The spectrum of options includes palliative procedures such as joint lavage and chondral debridement, reparative procedures such as microfracture and direct chondral repair, and restorative procedures such as mosaicoplasty. Preservation of the host tissue is most attractive solution to cartilage damage, particularly in young active individuals. Tissue engineering offers one solution but many problems have to be overcome before these techniques become a reality

    Genomic analysis of the Meningococcal ST-4821 complex – western clade, potential sexual transmission and predicted antibiotic susceptibility and vaccine coverage

    Get PDF
    Introduction: The ST-4821 complex (cc4821) is a leading cause of serogroup C and serogroup B invasive meningococcal disease in China where diverse strains in two phylogenetic groups (groups 1 and 2) have acquired fluoroquinolone resistance. cc4821 was recently prevalent among carriage isolates in men who have sex with men in New York City (USA). Genome-level population studies have thus far been limited to Chinese isolates. The aim of the present study was to build upon these with an extended panel of international cc4821 isolates. Methods: Genomes of isolates from Asia (1972 to 2017), Europe (2011 to 2018), North America (2007), and South America (2014) were sequenced or obtained from the PubMLST Neisseria database. Core genome comparisons were performed in PubMLST. Results: Four lineages were identified. Western isolates formed a distinct, mainly serogroup B sublineage with alleles associated with fluoroquinolone susceptibility (MIC &lt;0.03 mg/L) and reduced penicillin susceptibility (MIC 0.094 to 1 mg/L). A third of these were from anogenital sites in men who have sex with men and had unique denitrification gene alleles. Generally 4CMenB vaccine strain coverage was reliant on strain-specific NHBA peptides. Discussion: The previously identified cc4821 group 2 was resolved into three separate lineages. Clustering of western isolates was surprising given the overall diversity of cc4821. Possible association of this cluster with the anogenital niche is worthy of monitoring given concerns surrounding antibiotic resistance and potential subcapsular vaccine escape

    Trends in invasive bacterial diseases during the first 2 years of the COVID-19 pandemic: analyses of prospective surveillance data from 30 countries and territories in the IRIS Consortium.

    Get PDF
    BACKGROUND The Invasive Respiratory Infection Surveillance (IRIS) Consortium was established to assess the impact of the COVID-19 pandemic on invasive diseases caused by Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, and Streptococcus agalactiae. We aimed to analyse the incidence and distribution of these diseases during the first 2 years of the COVID-19 pandemic compared to the 2 years preceding the pandemic. METHODS For this prospective analysis, laboratories in 30 countries and territories representing five continents submitted surveillance data from Jan 1, 2018, to Jan 2, 2022, to private projects within databases in PubMLST. The impact of COVID-19 containment measures on the overall number of cases was analysed, and changes in disease distributions by patient age and serotype or group were examined. Interrupted time-series analyses were done to quantify the impact of pandemic response measures and their relaxation on disease rates, and autoregressive integrated moving average models were used to estimate effect sizes and forecast counterfactual trends by hemisphere. FINDINGS Overall, 116 841 cases were analysed: 76 481 in 2018-19, before the pandemic, and 40 360 in 2020-21, during the pandemic. During the pandemic there was a significant reduction in the risk of disease caused by S pneumoniae (risk ratio 0·47; 95% CI 0·40-0·55), H influenzae (0·51; 0·40-0·66) and N meningitidis (0·26; 0·21-0·31), while no significant changes were observed for S agalactiae (1·02; 0·75-1·40), which is not transmitted via the respiratory route. No major changes in the distribution of cases were observed when stratified by patient age or serotype or group. An estimated 36 289 (95% prediction interval 17 145-55 434) cases of invasive bacterial disease were averted during the first 2 years of the pandemic among IRIS-participating countries and territories. INTERPRETATION COVID-19 containment measures were associated with a sustained decrease in the incidence of invasive disease caused by S pneumoniae, H influenzae, and N meningitidis during the first 2 years of the pandemic, but cases began to increase in some countries towards the end of 2021 as pandemic restrictions were lifted. These IRIS data provide a better understanding of microbial transmission, will inform vaccine development and implementation, and can contribute to health-care service planning and provision of policies. FUNDING Wellcome Trust, NIHR Oxford Biomedical Research Centre, Spanish Ministry of Science and Innovation, Korea Disease Control and Prevention Agency, Torsten Söderberg Foundation, Stockholm County Council, Swedish Research Council, German Federal Ministry of Health, Robert Koch Institute, Pfizer, Merck, and the Greek National Public Health Organization
    corecore