5 research outputs found

    N- and KRAS mutations in primary testicular germ cell tumors: Incidence and possible biological implications

    Get PDF
    Recently, conflicting results have been reported on the incidence of RAS mutations in primary testicular germ cell tumors of adults (TGCTs). In four studies a low incidence of mutations (less than 15%) in a variety of TGCTs or derived cell lines was found, whereas in two other studies a high incidence of N- or KRAS mutations (over 40%) was shown. A total of 62 testicular seminomas (SE) and 34 nonseminomatous TGCTs (NS) were studied thus far. The largest series consisted of 42 TGCTs, studied on paraffin embedded tissue. We present the results of analysis for the presence of N- and KRAS mutations, in codons 12, 13, and 61, in snap frozen samples of 100 primary TGCTs, comprising 40 SE and 60 NS. Using the polymerase chain reaction (PCR) and allele specific oligonucleotide hybridization (ASO), mutations were found in five SE (three in NRAS and two in KRAS, all codon 12), and in one NS (KRAS, codon 12). To exclude underestimation of the incidence of RAS mutations in TGCTs due to the presence of an excess of wild type alleles in the analyzed sample, a PCR technique preferentially ampli

    Positional mapping of loci in the DiGeorge critical region at chromosome 22q11 using a new marker (D22S183)

    Get PDF
    The majority of patients with DiGeorge syndrome (DGS) and velo-cardio-facial syndrome (VCFS) and a minority of patients with non-syndromic conotruncal heart defects are hemizygous for a region of chromosome 22q11. The chromosomal region that is commonly deleted is larger than 2 Mb. It has not been possible to narrow the smallest region of overlap (SRO) of the deletions to less than ca 500 kb, which suggests that DGS/VCFS might be a contiguous gene syndrome. The saturation cloning of the SRO is being carried out, and one gene (TUPLE1) has been identified. By using a cosmid probe (M51) and fluorescence in situ hybridization, we show here that the anonymous DNA marker locus D22S183 is within the SRO, between TUPLE1 and D22S75 (probe N25). A second locus with weak homology to D22S183, recognized by cosmid M56, lies immediately outside the common SRO of the DGS and VCFS deletions, but inside the SRO of the DGS deletions. D22S183 sequences are strongly conserved in primates and weaker hybridizing signals are found in DNA of other mammalian species; no transcripts are however detected in polyA+ RNA from various adult human organs. Probe M51 allows fast reliable screening for 22q11 deletions using fluorescence in situ hybridization. A deletion was found in 11 out of 12 DGS patients and in 3 out of 7 VCFS patients. Two patients inherited the deletion from a parent with mild (atypical) symptoms

    Ablation of various regions within the avian vagal neural crest has differential effects on ganglion formation in the fore‐, mid‐ and hindgut

    Get PDF
    The vagal neural crest adjacent to the first seven somites gives rise to both ganglionic and ectomesenchymal derivatives. Ganglionic derivatives are the neurons and supportive cells of the enteric nervous system (ENS), cardiac, and dorsal root ganglia. Ectomesenchymal derivatives are cells in the cardiac outflow tract and the mesenchymal components of thymus and parathyroids. Ectomesenchymal derivatives are formed by a segment of the vagal neural crest, from the level of the otic vesicle down to the caudal boundary of the third somite, called the cardiac neural crest. We performed neural crest ablations to study regional differences within the avian vagal neural crest with regard to the formation of the ENS. Ablation of the entire vagal neural crest from the mid‐otic vesicle down to the seventh somite plus the nodose placode resulted in the absence of ganglia in the midgut (jejunum and ileum) and hindgut (colon). The foregut (esophagus, proventriculus, gizzard, and duodenum) was normally innervated. After ablation of the vagal neural crest adjacent to somites 3–5, ganglia were absent in the hindgut. Ablations of vagal neural crest not including this segment had no effect on the formation of the ENS. We surmise that the innervation of the hindgut in vivo depends specifically on the neural crest adjacent to somites 3–5, whereas innervation of the midgut can be accomplished by all segments within the vagal neural crest. The foregut can also be innervated by a source outside the vagal neural crest. To study intrinsic differences between various vagal neural crest segments regarding ENS formation, we performed chorioallantoic membrane cocultures of segments of quail vagal neural anlage and E4 chicken hindgut. We found that all vagal neural crest segments were able to give rise to enteric ganglia in the hindgut. When the neural crest of somites 6 and 7 was included in the segment, we also found melanocytes in the hindgut, suggesting that this segment is more related to trunk neural crest. Furthermore, we found that the vagal neural anlage from older embryos (>18 somites) showed an increased potential to form enteric ganglia. This suggests that vagal neural crest cells that have been in prolonged contact with the neural tube in vivo, because of either late emigration or delayed migration, have an increased probability to form enteric ganglia
    corecore