7 research outputs found

    Clinical evaluation of the clinicopathologic and gene expression profile (CP-GEP) in patients with melanoma eligible for sentinel lymph node biopsy:A multicenter prospective Dutch study

    Get PDF
    Sentinel lymph node biopsy (SLNB) is recommended for patients with &gt;pT1b cutaneous melanoma, and should be considered and discussed with patients diagnosed with pT1b cutaneous melanoma for the purpose of staging, prognostication and determining eligibility for adjuvant therapy. Previously, the clinicopathologic and gene expression profile (CP-GEP, Merlin Assay®) model was developed to identify patients who can forgo SLNB because of a low risk for sentinel node metastasis. The aim of this study was to evaluate the clinical use and implementation of the CP-GEP model in a prospective multicenter study in the Netherlands. Both test performance and feasibility for clinical implementation were assessed in 260 patients with T1-T4 melanoma. The CP-GEP model demonstrated an overall negative predictive value of 96.7% and positive predictive value of 23.7%, with a potential SLNB reduction rate of 42.2% in patients with T1-T3 melanoma. With a median time of 16 days from initiation to return of test results, there was sufficient time left before the SLNB was performed. Based on these outcomes, the model may support clinical decision-making to identify patients who can forgo SLNB in clinical practice.</p

    Histopathological and immunological spectrum in response evaluation of talimogene laherparepvec treatment and correlation with durable response in patients with cutaneous melanoma

    Get PDF
    Talimogene laherparepvec (T-VEC) is an intralesional oncolytic virotherapy for patients with irresectable stage III-IVM1a cutaneous melanoma. Although this treatment is considered to mainly act through T cell-mediated mechanisms, prominent numbers of plasma cells after T-VEC treatment have been described. The aim was to investigate how often these plasma cells were present, whether they were relevant in the response to treatment, and if these or other histopathological features were associated with durable response to treatment. Histopathological (granulomas, perineural inflammation, etc.) and immunological features [e.g. B cells/plasma cells (CD20/CD138) and T cells (CD3,CD4,CD8)] were scored and correlated with durable tumor response [i.e. complete response (CR) persisting beyond 6 months after treatment]. Plasmacellular infiltrate was examined with next-generation sequencing and immunohistochemistry (IgG, IgM, IgA, and IgD). Plasma cells were present in all T-VEC injected biopsies from 25 patients with melanoma taken at 3-5 months after starting treatment. In patients with a durable response (n = 12), angiocentric features and granulomas were more frequently identified compared with patients without a (durable) response (n = 13); 75% versus 29% for angiocentric features (P = 0.015) and 58% versus 15% for granulomas (P = 0.041). There was a class switch of IgM to IgG with skewing to certain dominant Ig heavy chain clonotypes. An angiocentric granulomatous pattern in T-VEC injected melanoma lesions was associated with a durable CR (>6 months). Plasma cells are probably a relevant feature in the mechanism of response but were not associated with durable response

    Mesenchymal-epithelial transition factor (MET) immunoreactivity in positive sentinel nodes from patients with melanoma

    Get PDF
    Objective: Patients with cutaneous melanoma and a positive sentinel node (SN) are currently eligible for adjuvant treatment with targeted therapy and immune checkpoint inhibitors. Near-infrared (NIR) fluorescence imaging could be an alternative and less invasive tool for SN biopsy to select patients for adjuvant treatment. One potential target for NIR is the mesenchymal-epithelial transition factor (MET). This study aimed to assess MET immunoreactivity in positive SNs and to evaluate its potential diagnostic, prognostic and therapeutic value. Methods: In this retrospective study, positive SN samples from patients with primary cutaneous melanoma were collected to assess MET immunoreactivity. To this end, paraffin-embedded SNs were stained for MET (monoclonal antibody D1C2). A 4-point Histoscore was used to determine cytoplasmic and membranous immunoreactivity (0 negative/1 weak/2 moderate/3 strong). Samples were considered positive when ≥10% of the cancer cells showed MET expression (staining intensity ≥1). Patient and clinicopathological characteristics were used for descriptive statistics, binary logistic regression, and survival analyses. Results: Positive MET immunohistochemistry was observed in 24 out of 37 samples (65%). No statistically significant associations were found between MET positivity and the following prognostic factors: Breslow thickness (P = 0.961), ulceration (P = 1.000), and SN tumor burden (P = 0.792). According to MET positivity, Kaplan-Meier curves showed no significant differences in survival. Conclusion: This exploratory study found no evidence to support MET immunoreactivity in positive SNs as a possible diagnostic or prognostic indicator in patients with melanoma

    Single agent Talimogene Laherparepvec for stage IIIB-IVM1c melanoma patients: A systematic review and meta-analysis

    No full text
    Single-agent Talimogene Laherparepvec (T-VEC) was developed for treatment of unresectable and injectable stage III-IV melanoma. Since its approval and reimbursement, studies have reported varying response rates. The purpose of this systematic review and meta-analysis was to investigate the efficacy and safety of T-VEC. Of 341 publications that were identified, eight studies with a total of 642 patients were included. In patients with stage IIIB-IVM1a, the pooled complete- and overall response rate (CRR and ORR) were 41% and 64%, respectively. In patients with stage IIIB-IVM1c, the pooled CRR and ORR were 30% and 44%, respectively. In patients with stage IVM1b and IVM1c, the pooled CRR and ORR were 4% and 9%, respectively. Adverse events (AEs) were seen in 41–100% of all patients and 0–11% of AEs were severe. In conclusion, single agent T-VEC achieves the highest response rates in patients with early metastatic melanoma and is well-tolerated with generally only mild toxicities

    Using a Clinicopathologic and Gene Expression (CP-GEP) Model to Identify Stage I–II Melanoma Patients at Risk of Disease Relapse

    Get PDF
    Background: The current standard of care for patients without sentinel node (SN) metastasis (i.e., stage I–II melanoma) is watchful waiting, while >40% of patients with stage IB–IIC will eventually present with disease recurrence or die as a result of melanoma. With the prospect of adjuvant therapeutic options for patients with a negative SN, we assessed the performance of a clinicopathologic and gene expression (CP-GEP) model, a model originally developed to predict SN metastasis, to identify patients with stage I–II melanoma at risk of disease relapse. Methods: This study included patients with cutaneous melanoma ≥18 years of age with a negative SN between October 2006 and December 2017 at the Sahlgrenska University Hospital (Sweden) and Erasmus MC Cancer Institute (the Netherlands). According to the CP-GEP model, which can be applied to the primary melanoma tissue, the patients were stratified into high or low risk of recurrence. The primary aim was to assess the 5-year recurrence-free survival (RFS) of low-and high-risk CP-GEP. A secondary aim was to compare the CP-GEP model with the EORTC nomogram, a model based on clinicopathological variables only. Results: In total, 535 patients (stage I–II) were included. CP-GEP stratification among these patients resulted in a 5-year RFS of 92.9% (95% confidence interval (CI): 86.4–96.4) in CP-GEP low-risk patients (n = 122) versus 80.7% (95%CI: 76.3–84.3) in CP-GEP high-risk patients (n = 413; hazard ratio 2.93 (95%CI: 1.41–6.09), p < 0.004). According to the EORTC nomogram, 25% of the patients were classified as having a ‘low risk’ of recurrence (96.8% 5-year RFS (95%CI 91.6–98.8), n = 130), 49% as ‘intermediate risk’ (88.4% 5-year RFS (95%CI 83.6–91.8), n = 261), and 26% as ‘high risk’ (61.1% 5-year RFS (95%CI 51.9–69.1), n = 137). Conclusion: In these two independent European cohorts, the CP-GEP model was able to stratify patients with stage I–II melanoma into two groups differentiated by RFS
    corecore