419 research outputs found

    Gas stripping in galaxy groups - the case of the starburst spiral NGC 2276

    Get PDF
    Ram pressure stripping of galactic gas is generally assumed to be inefficient in galaxy groups due to the relatively low density of the intragroup medium and the small velocity dispersions of groups. To test this assumption, we obtained Chandra X-ray data of the starbursting spiral NGC 2276 in the NGC 2300 group of galaxies, a candidate for a strong galaxy interaction with hot intragroup gas. The data reveal a shock-like feature along the western edge of the galaxy and a low-surface-brightness tail extending to the east, similar to the morphology seen in other wavebands. Spatially resolved spectroscopy shows that the data are consistent with intragroup gas being pressurized at the leading western edge of NGC 2276 due to the galaxy moving supersonically through the intragroup medium at a velocity ~850 km/s. Detailed modelling of the gravitational potential of NGC 2276 shows that the resulting ram-pressure could significantly affect the morphology of the outer gas disc but is probably insufficient to strip large amounts of cold gas from the disc. We estimate the mass loss rates due to turbulent viscous stripping and starburst outflows being swept back by ram pressure, showing that both mechanisms could plausibly explain the presence of the X-ray tail. Comparison to existing HI measurements shows that most of the gas escaping the galaxy is in a hot phase. With a total mass loss rate of roughly 5 M_Sun/yr, the galaxy could be losing its entire present HI supply within a Gyr. This demonstrates that the removal of galactic gas through interactions with a hot intragroup medium can occur rapidly enough to transform the morphology of galaxies in groups. Implications of this for galaxy evolution in groups and clusters are briefly discussed.Comment: 16 pages, 8 figures, accepted for publication in MNRA

    First results of the XI Groups Project: Studying an unbiased sample of galaxy groups

    Get PDF
    X-ray observations of hot, intergalactic gas in galaxy groups provide a useful means of characterizing the global properties of groups. However, X-ray studies of large group samples have typically involved very shallow X-ray exposures or have been based on rather heterogeneous samples. Here we present the first results of the XI (XMM/IMACS) Groups Project, a study targeting, for the first time, a redshift-selected, statistically unbiased sample of galaxy groups using deep X-ray data. Combining this with radio observations of cold gas and optical imaging and spectroscopy of the galaxy population, the project aims to advance the understanding of how the properties and dynamics of group galaxies relate to global group properties. Here, X-ray and optical data of the first four galaxy groups observed as part of the project are presented. In two of the groups we detect diffuse emission with a luminosity of L_X ~ 10^41 erg/s, among the lowest found for any X-ray detected group thus far, with a comparable upper limit for the other two. Compared to typical X-ray selected groups of similar velocity dispersion, these four systems are all surprisingly X-ray faint. We discuss possible explanations for the lack of significant X-ray emission in the groups, concluding that these systems are most likely collapsing for the first time. Our results strongly suggest that, unlike our current optically selected sample, previous X-ray selected group samples represented a biased picture of the group population. This underlines the necessity of a study of this kind, if one is to reach an unbiased census of the properties of galaxy groups and the distribution of baryons in the Universe.Comment: 14 pages, 8 figures, accepted for publication in MNRA
    • …
    corecore