2 research outputs found

    Periostin Circulating Levels and Genetic Variants in Patients with Non-Alcoholic Fatty Liver Disease

    Get PDF
    Circulating periostin has been suggested as a possible biomarker in non-alcoholic fatty liver disease (NAFLD) in Asian studies. In the present study, we aimed to test its still controversial relevance in a Caucasian population. In patients with histologically-proven NAFLD (N. = 74; 10 with hepatocellular carcinoma, HCC) plasma periostin concentrations were analyzed. POSTN haplotype analysis was based on rs9603226, rs3829365, and rs1029728. Hepatitis C patients (N. = 81, 7 HCC) and healthy subjects (N. = 27) were used as controls. The median plasma periostin concentration was 11.6 ng/mL without differences amongst groups; it was not influenced by age, liver fibrosis or steatosis. However, possession of haplotype two (rs9603226 = G, rs3829365 = C, rs1028728 = A) was associated with lower circulating periostin compared to other haplotypes. Moreover, periostin was higher in HCC patients. At multivariate analysis, HCC remained the only predictor of high periostin. In conclusion, plasma periostin concentrations in Caucasians NAFLD patients are not influenced by the degree of liver disease, but are significantly higher in HCC. Genetically-determined differences may account for some of the variability. These data suggest extreme caution in predicting a possible future role of periostin antagonists as a rational therapeutic alternative for NAFLD, but show a potential periostin role in the management of NAFLD-associated HCC

    A New HRCT Score for Diagnosing SARS-CoV-2 Pneumonia: A Single-Center Study with 1153 Suspected COVID-19 Patients in the Emergency Department

    No full text
    The 2019 coronavirus disease (COVID-19) pandemic is affecting millions of people worldwide. Chest high-resolution computed tomography (HRCT) is commonly used as a diagnostic test for suspected COVID-19; however, despite numerous attempts, there is no single scoring system that is widely accepted and used in clinical practice to estimate the probability of SARS-CoV-2 pneumonia. The aim of this single-center retrospective study is to develop a radiological score to predict the probability of COVID-19 with HRCT. Patients admitted to the emergency department with symptoms suggestive of COVID-19 who underwent both HRCT and RT-PCR on nasopharyngeal swab to detect SARS-CoV-2 infection between 1 March and 30 April 2020 were included. A multivariable regression analysis was conducted to identify all HRCT signs independently associated with a positive RT-PCR assay for SARS-CoV-2 and build the HRCT score. A total of 1153 patients were enrolled in this study. The number of segments with ground glass opacities (OR 1.18, 95% CI 1.11–1.26), number of segments with linear opacities (OR 1.21, 95% CI 1.05–1.42), crazy paving patterns (OR 6, 95% CI 3.79–9.76), and vascular ectasia in each segment (OR 2.46, 95% CI 1.1.5–5.8) were included in the score. The HRCT score showed high discriminatory power (area under the ROC curve of 0.8267 [95% CI 0.8–0.85]) with 72.2% sensitivity, 86.6% specificity, 78% PPV, and 83% NPV for its best cut-off. In summary, the HRCT score has good diagnostic and discriminatory accuracy for COVID-19 and is easy and quick to perform
    corecore