7 research outputs found

    DEVELOPMENT AND IN VITRO EVALUATION OF NANOLIPID CARRIERS OF CLOBETASOL PROPIONATE AND PRAMOXINE HYDROCHLORIDE FOR TOPICAL DELIVERY

    Get PDF
    Objective: Formulation and characterization of clobetasol propionate (CP) and pramoxine hydrochloride (PH) loaded nanostructured lipid carriers (NLC) offering improved performance in terms of drug loading and long-term stability for topical drug delivery. Methods: Drug-loaded NLC formulation was designed by melt-emulsification ultrasonication technique, by fluctuating the concentration of stearic acid and oleic acid. Poloxamer F68 and tween 80 were used as surfactants in the formulation and soya lecithin was used as stabilizer and co-surfactant. Differential scanning calorimetry (DLS), scanning electron microscopic studies (SEM), transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), x-ray diffraction (XRD), are the techniques used to characterize the preparations. Optimized drug-loaded formulations were evaluated for particle size, zeta potential, entrapment efficiency, in vitro drug release, hemocompatibility assay and cytotoxicity screening. Results: For drug loaded formulation the particle size was found in nanometric range. In vitro drug release was carried out using dialysis membrane and drug release after 24h was found to be 90.98 %±1.89 for CP and 79.81 %±4.20 for PH. Conclusion: The formulated NLC is a potential approach for sustained release of drug which may reduce systemic side effects, increase skin retention time and duration of action. Further in vivo studies will confirm the effect of NLC to increase skin retention time, decreases systemic absorption of the corticosteroid thereby avoiding side effects

    Enhanced Lymphatic Uptake of Leflunomide Loaded Nanolipid Carrier via Chylomicron Formation for the Treatment of Rheumatoid Arthritis

    Get PDF
    Purpose: The current study aims the lymphatic delivery of leflunomide loaded nanostructured lipid carriers (LNLC) for the treatment of rheumatoid arthritis, mainly focussed to enhance the lymphatic delivery via chylomicron formation, improved bioavailability and reduced systemic toxicity. Methods: Melt emulsification ultra-sonication method was used to formulate the nanostructured lipid carrier (NLC) containing leflunomide. Four batches were prepared by using various concentration of surfactants (tween 80 and poloxmer 188) and lipid mixtures (stearic acid and oleic acid). All the formulations were studied for various physiochemical properties Results: The formulation with increased concentration of lipid and surfactants showed highest entrapment efficiency (93.96 ± 0.47%) and better drug release (90.35%) at the end of 48 hrs. In vivo tests were carried out to determine the antiarthritic potential of the formulation in Sprague-dawley rats for a duration of 30d. The effect was evaluated by measuring the reduction in knee thickness. LNLC showed a marked reduction in inflammation compared to standard drug. Intestinal lymphatic uptake studies of LNLC were performed by intraduodenal administration and compared with leflunomide drug solution. The mesenteric lymph node was analysed by HPLC method and the concentration of drug was estimated. It showed that LNLC having highest uptake (40.34μg/ml) when compared with leflunomide drug solution (10.04μg/ml). Radiographic analysis and histopathological studies showed the formation of healthy cartilage after treatment period. Conclusion: The results suggested that LNLC has the potential to reduce the systemic toxicities associated with conventional therapy along with improved efficacy in the treatment of rheumatoid arthritis

    Carbon-Based Hierarchical Scaffolds for Myoblast Differentiation: Synergy between Nano-Functionalization and Alignment

    Get PDF
    While several scaffolds have been proposed for skeletal muscle regeneration, multiscale hierarchical scaffolds with the complexity of extracellular matrix (ECM) haven’t been engineered successfully. By precise control over nano- and microscale features, comprehensive understanding of the effect of multiple factors on skeletal muscle regeneration can be derived. In this study, we engineered carbon-based scaffolds with hierarchical nano- and microscale architecture with controlled physico-chemical properties. More specifically, we built multiscale hierarchy by growing carbon nanotube (CNT) carpets on two types of scaffolds, namely, interconnected microporous carbon foams and aligned carbon fiber mats. Nanostructured CNT carpets offered fine control over nano-roughness and wettability facilitating myoblast adhesion, growth and differentiation into myocytes. However, microporous foam architecture failed to promote their fusion into multinucleated myotubes. On the other hand, aligned fibrous architecture stimulated formation of multinucleated myotubes. Most importantly, nanostructured CNT carpets interfaced with microscale aligned fibrous architecture significantly enhanced myocyte fusion into multinucleated mature myotubes highlighting synergy between nanoscale surface features and micro-/macroscale aligned fibrous architecture in the process of myogenesis

    AI Trainer: Autoencoder Based Approach for Squat Analysis and Correction

    No full text
    Artificial intelligence and computer vision have widespread applications in workout analysis. It has been extensively used in sports and the athlete industry to identify errors and improve performance. Furthermore, these methods prevent injuries caused by a lack of instructors or costly infrastructure. One such exercise is the squat, which is a movement in which a standing person descends to a posture with their torso vertical and their knees firmly bent, then returns to their original upright position. Each person’s squat is distinct, with varying limb lengths causing their form to change when observed. It has been observed that the mobility of various joints and muscular strength have a role in this. A squat improves the user by increasing overall leg strength, strengthening knee and hip joints, and lowering the risk of heart disease due to cardiovascular development. This paper presents a method for classifying squat types and recommending the right squat version. This study uses MediaPipe and a deep learning-based technique to decide if squatting is good or bad. A stacked Bidirectional Gated Recurrent Unit (Bi-GRU) model with an attention layer is proposed to consistently and fairly assess each user, categorizing squats into seven classes. This stacked Bi-GRU model with an attention unit is then compared to other cutting-edge models, both with and without the attention layer. The model outperforms other models by attaining an accuracy of 94% and is demonstrated to work the best and most consistently for our dataset. Furthermore, the individual executing the incorrect squat is corrected to the best of their ability, depending on their performance and body proportions, by providing the correct form

    Carbon-Based Hierarchical Scaffolds for Myoblast Differentiation: Synergy between Nano-Functionalization and Alignment

    Get PDF
    While several scaffolds have been proposed for skeletal muscle regeneration, multiscale hierarchical scaffolds with the complexity of extracellular matrix (ECM) haven’t been engineered successfully. By precise control over nano- and microscale features, comprehensive understanding of the effect of multiple factors on skeletal muscle regeneration can be derived. In this study, we engineered carbon-based scaffolds with hierarchical nano- and microscale architecture with controlled physico-chemical properties. More specifically, we built multiscale hierarchy by growing carbon nanotube (CNT) carpets on two types of scaffolds, namely, interconnected microporous carbon foams and aligned carbon fiber mats. Nanostructured CNT carpets offered fine control over nano-roughness and wettability facilitating myoblast adhesion, growth and differentiation into myocytes. However, microporous foam architecture failed to promote their fusion into multinucleated myotubes. On the other hand, aligned fibrous architecture stimulated formation of multinucleated myotubes. Most importantly, nanostructured CNT carpets interfaced with microscale aligned fibrous architecture significantly enhanced myocyte fusion into multinucleated mature myotubes highlighting synergy between nanoscale surface features and micro-/macroscale aligned fibrous architecture in the process of myogenesis
    corecore