9 research outputs found

    Development of decadal (1985–1995–2005) land use and land cover database for India

    Get PDF
    India has experienced significant Land-Use and Land-Cover Change (LULCC) over the past few decades. In this context, careful observation and mapping of LULCC using satellite data of high to medium spatial resolution is crucial for understanding the long-term usage patterns of natural resources and facilitating sustainable management to plan, monitor and evaluate development. The present study utilizes the satellite images to generate national level LULC maps at decadal intervals for 1985, 1995 and 2005 using onscreen visual interpretation techniques with minimum mapping unit of 2.5 hectares. These maps follow the classification scheme of the International Geosphere Biosphere Programme (IGBP) to ensure compatibility with other global/regional LULC datasets for comparison and integration. Our LULC maps with more than 90% overall accuracy highlight the changes prominent at regional level, i.e., loss of forest cover in central and northeast India, increase of cropland area in Western India, growth of peri-urban area, and relative increase in plantations. We also found spatial correlation between the cropping area and precipitation, which in turn confirms the monsoon dependent agriculture system in the country. On comparison with the existing global LULC products (GlobCover and MODIS), it can be concluded that our dataset has captured the maximum cumulative patch diversity frequency indicating the detailed representation that can be attributed to the on-screen visual interpretation technique. Comparisons with global LULC products (GlobCover and MODIS) show that our dataset captures maximum landscape diversity, which is partly attributable to the on-screen visual interpretation techniques. We advocate the utility of this database for national and regional studies on land dynamics and climate change research. The database would be updated to 2015 as a continuing effort of this study

    Predicting the Forest Canopy Height from LiDAR and Multi-Sensor Data Using Machine Learning over India

    No full text
    Forest canopy height estimates, at a regional scale, help understand the forest carbon storage, ecosystem processes, the development of forest management and the restoration policies to mitigate global climate change, etc. The recent availability of the NASA’s Global Ecosystem Dynamics Investigation (GEDI) LiDAR data has opened up new avenues to assess the plant canopy height at a footprint level. Here, we present a novel approach using the random forest (RF) for the wall-to-wall canopy height estimation over India’s forests (i.e., evergreen forest, deciduous forest, mixed forest, plantation, and shrubland) by employing the high-resolution top-of-the-atmosphere (TOA) reflectance and vegetation indices, the synthetic aperture radar (SAR) backscatters, the topography and tree canopy density, as the proxy variables. The variable importance plot indicated that the SAR backscatters, tree canopy density and the topography are the most influential height predictors. 33.15% of India’s forest cover demonstrated the canopy height 20 m). This study advocates the importance and use of GEDI data for estimating the canopy height, preferably in data-deficit mountainous regions, where most of India’s natural forest vegetation exists

    COVID-19 slowdown induced improvement in air quality in India: rapid assessment using Sentinel-5P TROPOMI data

    No full text
    The COVID-19 lock/slow down affected humanity and livelihood, while it showed some positive effects on the environment with improvement in air quality indicators. Though many studies published after COVID-19 first phase lockdown observed reduction in pollutants over India, no studies yet compared the air quality indicators over the two lock/slow down windows during 2020–2021. This study reports results of rapid assessment of seven air quality indicators such as Nitrogen dioxide (NO2), Sulphur dioxide (SO2), Formaldehyde (HCHO), Methane (CH4), Carbon monoxide (CO), Aerosol (Ultraviolet Aerosol Index, UVAI), and Ozone (O3) for the past three years on monthly time scale using TROPOMI (Tropospheric Monitoring Instrument) data on GEE (Google Earth Engine) platform over India, with focus on the Gangetic plain, an air pollution hotspot. Significant reduction in NO2, SO2, HCHO and Absorbing Aerosol Index (AAI) was observed during March–May 2020 as compared to the same period in 2019, while the levels of NO2, SO2, HCHO and CO increased significantly in 2021 compared to March–May 2020. This suggests that COVID-19 lock/slow down in 2020 played a significant role in improving air quality indicators, while the relaxation in 2021 has led to detoriation, compared to 2020. The pyrogenic (forest fire and slash and burn agriculture) and agricultural (wet crop) sources were identified to contaminate the expression of slow/lock down effects on air quality indicators such as HCHO, CO and CH4 over India

    Operational Forest-Fire Spread Forecasting Using the WRF-SFIRE Model

    No full text
    In the present research, the open-source WRF-SFIRE model has been used to carry out surface forest fire spread forecasting in the North Sikkim region of the Indian Himalayas. Global forecast system (GFS)-based hourly forecasted weather model data obtained through the National Centers for Environmental Prediction (NCEP) at 0.25 degree resolution were used to provide the initial conditions for running WRF-SFIRE. A landuse–landcover map at 1:10,000 scale was used to define fuel parameters for different vegetation types. The fuel parameters, i.e., fuel depth and fuel load, were collected from 23 sample plots (0.1 ha each) laid down in the study area. Samples of different categories of forest fuels were measured for their wet and dry weights to obtain the fuel load. The vegetation specific surface area-to-volume ratio was referenced from the literature. The atmospheric data were downscaled using nested domains in the WRF model to capture fire–atmosphere interactions at a finer resolution (40 m). VIIRS satellite sensor-based fire alert (375 m spatial resolution) was used as ignition initiation point for the fire spread forecasting, whereas the forecasted hourly weather data (time synchronized with the fire alert) were used for dynamic forest-fire spread forecasting. The forecasted burnt area (1.72 km2) was validated against the satellite-based burnt area (1.07 km2) obtained through Sentinel 2 satellite data. The shapes of the original and forecasted burnt areas matched well. Based on the various simulation studies conducted, an operational fire spread forecasting system, i.e., Sikkim Wildfire Forecasting and Monitoring System (SWFMS), has been developed to facilitate firefighting agencies to issue early warnings and carry out strategic firefighting

    Development of Decadal (1985–1995–2005) Land Use and Land Cover Database for India

    No full text
    India has experienced significant Land-Use and Land-Cover Change (LULCC) over the past few decades. In this context, careful observation and mapping of LULCC using satellite data of high to medium spatial resolution is crucial for understanding the long-term usage patterns of natural resources and facilitating sustainable management to plan, monitor and evaluate development. The present study utilizes the satellite images to generate national level LULC maps at decadal intervals for 1985, 1995 and 2005 using onscreen visual interpretation techniques with minimum mapping unit of 2.5 hectares. These maps follow the classification scheme of the International Geosphere Biosphere Programme (IGBP) to ensure compatibility with other global/regional LULC datasets for comparison and integration. Our LULC maps with more than 90% overall accuracy highlight the changes prominent at regional level, i.e., loss of forest cover in central and northeast India, increase of cropland area in Western India, growth of peri-urban area, and relative increase in plantations. We also found spatial correlation between the cropping area and precipitation, which in turn confirms the monsoon dependent agriculture system in the country. On comparison with the existing global LULC products (GlobCover and MODIS), it can be concluded that our dataset has captured the maximum cumulative patch diversity frequency indicating the detailed representation that can be attributed to the on-screen visual interpretation technique. Comparisons with global LULC products (GlobCover and MODIS) show that our dataset captures maximum landscape diversity, which is partly attributable to the on-screen visual interpretation techniques. We advocate the utility of this database for national and regional studies on land dynamics and climate change research. The database would be updated to 2015 as a continuing effort of this study
    corecore