14 research outputs found

    PROTECTIVE EFFECT OF ETHANOLIC EXTRACT FROM THE ROOT OF ARGYREIA SPECIOSA AGAINST GLOBAL CEREBRAL ISCHEMIC REPERFUSION INJURY IN RATS

    Get PDF
    Cerebral stroke is the principal reason of death without effective treatment in the world and recognized as the common cause of disability. Argyreia speciosa (Linn.f.) (Convolvulaceae, Synonyms: Argyreia nervosa) is widely distributed plant species in India. It is commonly known as Elephant creeper and Vryddhadaru. A. speciosa is a very valuable plant in the Ayurvedic system. In 'Rasayan' drug it has been used for the treatment of various neurological diseases. Its root taste is bitter and having the multiple uses like as a brain tonic, nootropic, anti-anxiety and anticonvulsant activity. The current study, plan to investigate the neuroprotective effect of ethanolic extract of A. speciosa root (ASEE) in a validate rat model of stroke known as global cerebral ischemic reperfusion injury (GCIRI). We divided 36 male Wistar rats to six experimental groups (n= 6). The group-I considered as sham control (no GCIRI), Group-II saline treated GCIRI, Group-III, IV, and V received ASEE (100, 200 and 400 mg/kg, p.o.) for 7 days prior to the induction of GCIRI while Group-VI termed as standard and it received quercetin (20 mg/kg, i.p.) 30 min prior induction of GCIRI. GCIRI produced the significant neurological deficit, sensorimotor dysfunction, decrease neurobehavioral parameters, increased cerebral infarction area and brain edema as compared with sham control rats. Seven days of pretreatment with ASEE markedly attenuates all the changes caused by GCIRI to the normal level. Our results proved that ASEE possess the protective effect on GCIRI induced stroke and aforementioned neuroprotection may be due to its antioxidant and anti-inflammatory property. Keywords: Brain stroke, BCCAO, Antioxidants, Neuroprotection, Argyreia specios

    PHYTOCHEMISTRY AND PHARMACOLOGICAL PROFILE OF TRADITIONALLY USED MEDICINAL PLANT ARGYREIA SPECIOSA (LINN. F.)

    Get PDF
    Argyreia speciosa (Linn.f.) (Family: Convolvulaceae, Synonyms: Argyreia nervosa) is used in the traditional Ayurvedic systems of medicine as well as in local health folklore. It is commonly known as Vidhaara in Hindi and Hawaiian Baby Woodrose and Elephant creeper in English. It is the large climber and seen throughout India up to an altitude of 500 m. A. speciosa possess various pharmacological activity such as anti-aging, gastroprotective, analgesic & anti-inflammatory, aphrodisiac, antiviral, antidiabetic,  anticonvulsion, antioxidant, antidiarrheal, antiulcer, central nervous system depressant, nematocides, nootropic, anticancer and many more. Apart from this numerous phytoconstituents have been isolated from A. speciosa. Its seeds principally contain lysergamides, eragine and isoeragine which responsible for its hallucinogenic properties. The present paper efforts bring to light the available literature on A. speciosa with respect to traditional, ethnobotanical, phytoconstituents and review of different pharmacological activities. Keywords: Argyreia speciosa, Vidhaara, Anti-aging, Hallucinogen, Ethnobotanica

    Selection and Role of Polymers for Designing of a Drug Carrier

    Get PDF
    Polymers have helped to develop drug carrier technologies by allowing for the regulated release of bioactive molecules in consistent dosages over extended periods of time, cyclic dosing, and adjustable delivery of both hydrophobic and hydrophilic medicines. Formulations are released in a coordinated and consistent fashion over long periods of time. Polymers going to act as just an inert carrier whereby a substance can be conjugated having significant advantages. For instance, the polymer enhances the pharmacodynamic and pharmacokinetic characteristics of biopharmaceuticals in a variety of ways, such as plasma half-life, reduces immunogenicity, increases biopharmaceutical consistency, enhances the solubilization of low-molecular-weight substances, and has the prospects for targeted delivery. Smart polymeric delivery systems, in instance, have been investigated as “smart” delivery methods capable of releasing encapsulated pharmaceuticals at the right time and place of activity with respect to certain physiological stimuli. The development of novel polymeric materials and cross-linkers that are more biocompatible and biodegradable would expand and improve present uses. Polymer sensitivity to a particular stimulus may be tuned within a limited range because of the diversity of polymer substrates and their sequential production. The methods through which polymer frameworks are formed in situ to construct implanted systems for continuous release of medicinal macromolecules are discussed in this chapter, as well as numerous applicability of enhanced drug delivery

    COMPARATIVE PHARMACOGNOSTICAL CHARACTERIZATION OF SELECTED SPECIES OF OCIMUM

    Get PDF
    In traditional systems of medicine, different parts of Ocimum have been recommended for the treatment of bronchitis, bronchial asthma, malaria, diarrhoea, dysentery, skin diseases, arthritis, chronic fever and insect bite. Morphological and anatomical characters play a vital role in crude drug identification and standardization. In the present study, comparative Pharmacognostical evaluation was performed for the dried leaves powder of selected species of Ocimum such as O. gratissimum, O. sanctum and O. canum. The result from macroscopical, microscopical and powder characters are used for the identification of O. gratissimum, O. sanctum and O. canum. The results throw immense light on the botanical identity of various species of Ocimum which furnish a basis of judging the authenticity of the plant and also to differentiate the drug from its allied species and detect adulterants. Keywords: Ocimum gratissimum, Ocimum sanctum, Ocimum canum, Comparative, Pharmacognostical characterization

    Periodontitis as a causative agent for systemic disease of pancreas

    Get PDF
    In recent years it has been studied that periodontal diseases have a strong correlation with systemic health. The purpose of the present study is to correlate the periodontitis with the pancreatic health. Two hundred sixty subjects were selected for this study and divided in control and chronic periodontitis. Amylase, lipase, glucose, cholesterol, sodium, potassium and calcium level were measured in serum of all subjects. Significant changes were observed in amylase, glucose, cholesterol and calcium levels in periodontitis subjects

    Therapeutic implications of current Janus kinase inhibitors as anti-COVID agents: A review

    Get PDF
    Severe cases of COVID-19 are characterized by hyperinflammation induced by cytokine storm, ARDS leading to multiorgan failure and death. JAK-STAT signaling has been implicated in immunopathogenesis of COVID-19 infection under different stages such as viral entry, escaping innate immunity, replication, and subsequent inflammatory processes. Prompted by this fact and prior utilization as an immunomodulatory agent for several autoimmune, allergic, and inflammatory conditions, Jakinibs have been recognized as validated small molecules targeting the rapid release of proinflammatory cytokines, primarily IL-6, and GM-CSF. Various clinical trials are under investigation to evaluate Jakinibs as potential candidates for treating COVID-19. Till date, there is only one small molecule Jakinib known as baricitinib has received FDA-approval as a standalone immunomodulatory agent in treating critical COVID-19 patients. Though various meta-analyses have confirmed and validated the safety and efficacy of Jakinibs, further studies are required to understand the elaborated pathogenesis of COVID-19, duration of Jakinib treatment, and assess the combination therapeutic strategies. In this review, we highlighted JAK-STAT signalling in the pathogenesis of COVID-19 and clinically approved Jakinibs. Moreover, this review described substantially the promising use of Jakinibs and discussed their limitations in the context of COVID-19 therapy. Hence, this review article provides a concise, yet significant insight into the therapeutic implications of Jakinibs as potential anti-COVID agents which opens up a new horizon in the treatment of COVID-19, effectively

    Integrating network pharmacology with molecular docking to rationalize the ethnomedicinal use of Alchornea laxiflora (Benth.) Pax & K. Hoffm. for efficient treatment of depression

    Get PDF
    Background: Alchornea laxiflora (Benth.) Pax & K. Hoffm. (A. laxiflora) has been indicated in traditional medicine to treat depression. However, scientific rationalization is still lacking. Hence, this study aimed to investigate the antidepressant potential of A. laxiflora using network pharmacology and molecular docking analysis.Materials and methods: The active compounds and potential targets of A. laxiflora and depression-related targets were retrieved from public databases, such as PubMed, PubChem, DisGeNET, GeneCards, OMIM, SwissTargetprediction, BindingDB, STRING, and DAVID. Essential bioactive compounds, potential targets, and signaling pathways were predicted using in silico analysis, including BA-TAR, PPI, BA-TAR-PATH network construction, and GO and KEGG pathway enrichment analysis. Later on, with molecular docking analysis, the interaction of essential bioactive compounds of A. laxiflora and predicted core targets of depression were verified.Results: The network pharmacology approach identified 15 active compounds, a total of 219 compound-related targets, and 14,574 depression-related targets with 200 intersecting targets between them. SRC, EGFR, PIK3R1, AKT1, and MAPK1 were the core targets, whereas 3-acetyloleanolic acid and 3-acetylursolic acid were the most active compounds of A. laxiflora with anti-depressant potential. GO functional enrichment analysis revealed 129 GO terms, including 82 biological processes, 14 cellular components, and 34 molecular function terms. KEGG pathway enrichment analysis yielded significantly enriched 108 signaling pathways. Out of them, PI3K-Akt and MAPK signaling pathways might have a key role in treating depression. Molecular docking analysis results exhibited that core targets of depression, such as SRC, EGFR, PIK3R1, AKT1, and MAPK1, bind stably with the analyzed bioactive compounds of A. laxiflora.Conclusion: The present study elucidates the bioactive compounds, potential targets, and pertinent mechanism of action of A. laxiflora in treating depression. A. laxiflora might exert an antidepressant effect by regulating PI3K-Akt and MAPK signaling pathways. However, further investigations are required to validate

    Appraising the therapeutical potentials of Alchornea laxiflora (Benth.) Pax & K. Hoffm., an underexplored medicinal herb: A systematic review

    Get PDF
    Ethnopharmacological relevance:Alchornea laxiflora (Benth.) Pax & K. Hoffm. (Euphorbiaceae) is an important traditional medicinal plant grown in tropical Africa. The stem, leaves, and root have been widely used in the folk medicine systems in Nigeria, Cameroon, South Africa, and Ghana to treat various ailments, including inflammatory, infectious, and central nervous system disorders, such as anxiety and epilepsy.Material and methods: The scientific name of the plant was validated using the “The Plant List,” “Kew Royal Botanic Gardens,” and Tropicos Nomenclatural databases. The literature search on A. laxiflora was performed using electronic search engines and databases such as Google scholar, ScienceDirect, PubMed, AJOL, Scopus, and Mendeley.Results: To the best of our knowledge, no specific and detailed review has been reported on A. laxiflora. Consequently, this review provides an up-to-date systematic presentation on ethnobotany, phytoconstituents, pharmacological activities, and toxicity profiles of A. laxiflora. Phytochemical investigations disclosed the presence of important compounds, such as alkaloids, flavonoids, phenolics, terpenoids, and fatty acids. Furthermore, various pharmacological activities and traditional uses reported for this botanical drug were discussed comprehensively.Conclusion: This systemic review presents the current status and perspectives of A. laxiflora as a potential therapeutic modality that would assist future researchers in exploring this African botanical drug as a source of novel drug candidates for varied diseases
    corecore