120 research outputs found
Orientational Order-Disorder Effects in Molecular Crystals as Evidenced by Low-Frequency Raman Spectra
The studies of reorientational motions of molecules in crystals
of organic compounds by low-frequency Raman spectroscopy are
briefly reported. Some examples illustrate the efficiency of the
investigation of order-disorder phenomena in organic crystals by
the temperature dependence of low-frequency vibrational spectra
combined with simultaneous calculations of the molecular dynamics
by the atom-atom potentials (AAP) method. The conditions have been determined which are necessary in order to affect the low-frequency Raman spectra by anisotropy of molecular reorientations in crystals
THERMAL STABILITY AND MECHANICAL PROPERTIES OF NANOSTRUCTURED NICKEL BASED ALLOY INCONEL 718
Abstract. Thermal stability of nanostructured (NS) nickel based alloy Inconel 718 has been investigated. This structure was formed by severe plastic deformation (SPD) via high pressure torsion (HPT) and multiple isothermal forging (MIF) of the alloy with an initial coarse-grained (CG) structure. The produced microstructures were analyzed. Such NS conditions are characterized by the nonequilibrium grain boundaries and a high hardness value that is twice larger than that of a CG alloy. Tensile tests of NS alloy after MIF have shown very high room-temperature strength. Thermal stability of the studied structural conditions of the alloy depends on the presence and stability of the precipitates of -and n W P b T b T P R W U f W X R W X ] P R R a S P ] R T f X c W X c b d P ] c X c h sizes, coherence with matrix, prevents the grain growth
Microchannel avalanche photodiode with wide linearity range
Design and physical operation principles of new microchannel avalanche
photodiode (MC APD) with gain up to 10^5 and linearity range improved an order
of magnitude compared to known similar devices. A distinctive feature of the
new device is a directly biased p-n junction under each pixel which plays role
of an individual quenching resistor. This allows increasing pixel density up to
40000 per mm^2 and making entire device area sensitive.Comment: Submitted to Journal of Technical Physic
Evaluation of effectiveness of remineralizing gels
The purpose of the study was to conduct a literature review to investigate the remineralizing activity of gels for the treatment of initial enamel caries.Цель исследования – проведение обзора литературы, направленное на исследование реминерализующей активности гелей для лечения начального кариеса эмали
Optimization of Parameters of Adaptive Spray System for Agricultural Sprayer
Introduction. When growing tall-growth crops (cereal crops in late the phases of development, corn, sunflower, etc.), there are used boom sprayers equipped with twin-fluid spray cones with fixed angles of inclination to the vertical of the spray cones. The working fluid is applied with such sprays are more intensively on the front side of the plant leaves while the intensity of covering the plants from the back side with the working fluid decreases. The development of the spray system will allow improving the quality of crop treatment with boom sprayers.
Aim of the Study. The aim of the research is to determine experimentally the algorithm for changing the angles of inclination of a twin-fluid spray cone that provides the same intensity of applying working liquid to the leaves of high-growth plants.
Materials and Methods. The research was carried out on a test bench by applying colored water to the front and rear sides of a tall-growth plant model moving at a specified speed. The experiment was carried out according to the method of optimal planning. The difference between the content of droplets on the front and rear sides of the tall-growth plant model was taken as an optimization parameter. Variable factors were the spray cone inclination angles and the operating speed of the sprayer.
Results. The algorithm for changing the optimum values of the spray cone inclination angles depending on the sprayer speed was determined based on the equality of the first derivative of the optimization to zero parameter by the value of these angles.
Discussion and Conclusion. According to the algorithm, when the sprayer operating speed increases from 1.2 to 3.2 m/s, the optimal angle of inclination to the front spray cone vertical changes linearly from 25 to 21 degrees, and the rear one ‒ from 46.7 to 57 degrees. This algorithm will allow justifying the technical specifications to develop a processor for automatic control of the spray cone inclination angles cones when the sprayer is operating
The effect of chromophores concentration on the nonlinear optical activity of methacrylic copolymers with azochromophores in the side chain
© Published under licence by IOP Publishing Ltd. Quadratic nonlinear-optical characteristics of thin films based on methacrylic copolymers with of chromophore-containing monomers incorporated at various concentrations are measured by Second Harmonic Generation technique. Optimal chromophores content is obtained to be about 17 mol%, rather high values of nonlinear-optical coefficient, d33, up to 60 pm/V, are determined
The relative contribution of nmdars to excitatory postsynaptic currents is controlled by ca<sup>2+</sup>-induced inactivation
© 2016 Valiullina, Zakharova, Mukhtarov, Draguhn, Burnashev and Rozov.NMDA receptors (NMDARs) are important mediators of excitatory synaptic transmission and plasticity. A hallmark of these channels is their high permeability to Ca2+. At the same time, they are themselves inhibited by the elevation of intracellular Ca2+ concentration. It is unclear however, whether the Ca2+ entry associated with single NMDAR mediated synaptic events is sufficient to self-inhibit their activation. Such auto-regulation would have important effects on the dynamics of synaptic excitation in several central neuronal networks. Therefore, we studied NMDAR-mediated synaptic currents in mouse hippocampal CA1 pyramidal neurons. Postsynaptic responses to subthreshold Schaffer collateral stimulation depended strongly on the absence or presence of intracellular Ca2+ buffers. Loading of pyramidal cells with exogenous Ca2+ buffers increased the amplitude and decay time of NMDAR mediated EPSCs (EPSPs) and prolonged the time window for action potential (AP) generation. Our data indicate that the Ca2+ influx mediated by unitary synaptic events is sufficient to produce detectable self-inhibition of NMDARs even at a physiological Mg2+ concentration. Therefore, the contribution of NMDARs to synaptic excitation is strongly controlled by both previous synaptic activity as well as by the Ca2+ buffer capacity of postsynaptic neurons
The relative contribution of nmdars to excitatory postsynaptic currents is controlled by ca2+-induced inactivation
© 2016 Valiullina, Zakharova, Mukhtarov, Draguhn, Burnashev and Rozov. NMDA receptors (NMDARs) are important mediators of excitatory synaptic transmission and plasticity. A hallmark of these channels is their high permeability to Ca2+. At the same time, they are themselves inhibited by the elevation of intracellular Ca2+ concentration. It is unclear however, whether the Ca2+ entry associated with single NMDAR mediated synaptic events is sufficient to self-inhibit their activation. Such auto-regulation would have important effects on the dynamics of synaptic excitation in several central neuronal networks. Therefore, we studied NMDAR-mediated synaptic currents in mouse hippocampal CA1 pyramidal neurons. Postsynaptic responses to subthreshold Schaffer collateral stimulation depended strongly on the absence or presence of intracellular Ca2+ buffers. Loading of pyramidal cells with exogenous Ca2+ buffers increased the amplitude and decay time of NMDAR mediated EPSCs (EPSPs) and prolonged the time window for action potential (AP) generation. Our data indicate that the Ca2+ influx mediated by unitary synaptic events is sufficient to produce detectable self-inhibition of NMDARs even at a physiological Mg2+ concentration. Therefore, the contribution of NMDARs to synaptic excitation is strongly controlled by both previous synaptic activity as well as by the Ca2+ buffer capacity of postsynaptic neurons
Structure and Dynamics of Solvation Shells of Copper(II) Complexes with N,O-Containing Ligands
© 2015 American Chemical Society. EPR, NMR relaxation methods, and DFT calculations were jointly used to investigate the structural and dynamical characteristics of solvation shells of copper(II) complexes with iminodiacetic acid, glycylglycine, and glycyglycylglycine in comparison with the copper(II) bis-glycinate studied previously. A strong trans influence of deprotonated peptide nitrogen was revealed in EPR spectra parameters of copper(II) complexes with oligopeptides. With models of the experimental NMRD data and literature X-ray structural information, it was suggested that only one water molecule coordinates in axial position of copper(II) complexes with glycine and di- and triglycine (Cu(Gly)2, Cu(GGH-1), and Cu(GGGH-2)-), and the copper ion in these complexes is pentacoordinated, while in the iminodiacetate complex, Cu(IDA), both apical positions can be occupied by solute molecules. The obtained structural results were confirmed by DFT calculations of structures of studied compounds using different functionals and basis sets. It was shown that the donor ability of equatorial ligands and trans influence have an effect on the characteristics of the axial water bond. With increasing donor strength of equatorial ligands, pentacoordination of copper(II) complexes in water solutions becomes more preferable
Hepatitis C Virus NS5A Protein Triggers Oxidative Stress by Inducing NADPH Oxidases 1 and 4 and Cytochrome P450 2E1
Replication of hepatitis C virus (HCV) is associated with the induction of oxidative stress, which is thought to play a major role in various liver pathologies associated with chronic hepatitis C. NS5A protein of the virus is one of the two key viral proteins that are known to trigger production of reactive oxygen species (ROS). To date it has been considered that NS5A induces oxidative stress by altering calcium homeostasis. Herein we show that NS5A-induced oxidative stress was only moderately inhibited by the intracellular calcium chelator BAPTA-AM and not at all inhibited by the drug that blocks the Ca2+ flux from ER to mitochondria. Furthermore, ROS production was not accompanied by induction of ER oxidoreductins (Ero1), H2O2-producing enzymes that are implicated in the regulation of calcium fluxes. Instead, we found that NS5A contributes to ROS production by activating expression of NADPH oxidases 1 and 4 as well as cytochrome P450 2E1. These effects were mediated by domain I of NS5A protein. NOX1 and NOX4 induction was mediated by enhanced production of transforming growth factor β1 (TGFβ1). Thus, our data show that NS5A protein induces oxidative stress by several multistep mechanisms
- …