102 research outputs found
D-brane Dynamics in the c=1 Matrix Model
Recent work has shown that unstable D-branes in two dimensional string theory
are represented by eigenvalues in a dual matrix model. We elaborate on this
proposal by showing how to systematically include higher order effects in
string perturbation theory. The full closed string state produced by a rolling
open string tachyon corresponds to a sum of string amplitudes with any number
of boundaries and closed string vertex operators. These contributions are
easily extracted from the matrix model. As in the AdS/CFT correspondence, the
sum of planar diagrams in the open string theory is directly related to the
classical theory in the bulk, i.e. sphere diagrams. We also comment on the
description of static D-branes in the matrix model, in terms of a solution
representing a deformed Fermi sea.Comment: 19 pages. v2: references added, comments on vanishing disk amplitude
Quantitative analysis of chromatin interaction changes upon a 4.3 Mb deletion at mouse 4E2
BACKGROUND: Circular chromosome conformation capture (4C) has provided important insights into three dimensional (3D) genome organization and its critical impact on the regulation of gene expression. We developed a new quantitative framework based on polymer physics for the analysis of paired-end sequencing 4C (PE-4Cseq) data. We applied this strategy to the study of chromatin interaction changes upon a 4.3 Mb DNA deletion in mouse region 4E2. RESULTS: A significant number of differentially interacting regions (DIRs) and chromatin compaction changes were detected in the deletion chromosome compared to a wild-type (WT) control. Selected DIRs were validated by 3D DNA FISH experiments, demonstrating the robustness of our pipeline. Interestingly, significant overlaps of DIRs with CTCF/Smc1 binding sites and differentially expressed genes were observed. CONCLUSIONS: Altogether, our PE-4Cseq analysis pipeline provides a comprehensive characterization of DNA deletion effects on chromatin structure and function
D-brane Decay in Two-Dimensional String Theory
We consider unstable D0-branes of two dimensional string theory, described by
the boundary state of Zamolodchikov and Zamolodchikov [hep-th/0101152]
multiplied by the Neumann boundary state for the time coordinate . In the
dual description in terms of the matrix model, this D0-brane is described
by a matrix eigenvalue on top of the upside down harmonic oscillator potential.
As suggested by McGreevy and Verlinde [hep-th/0304224], an eigenvalue rolling
down the potential describes D-brane decay. As the eigenvalue moves down the
potential to the asymptotic region it can be described as a free relativistic
fermion. Bosonizing this fermion we get a description of the state in terms of
a coherent state of the tachyon field in the asymptotic region, up to a
non-local linear field redefinition by an energy-dependent phase. This coherent
state agrees with the exponential of the closed string one-point function on a
disk with Sen's marginal boundary interaction for which describes D0-brane
decay.Comment: 19 pages, harvmac, minor change
First LIGO search for gravitational wave bursts from cosmic (super)strings
We report on a matched-filter search for gravitational wave bursts from
cosmic string cusps using LIGO data from the fourth science run (S4) which took
place in February and March 2005. No gravitational waves were detected in 14.9
days of data from times when all three LIGO detectors were operating. We
interpret the result in terms of a frequentist upper limit on the rate of
gravitational wave bursts and use the limits on the rate to constrain the
parameter space (string tension, reconnection probability, and loop sizes) of
cosmic string models.Comment: 11 pages, 3 figures. Replaced with version submitted to PR
Search for Gravitational Wave Bursts from Soft Gamma Repeaters
We present the results of a LIGO search for short-duration gravitational
waves (GWs) associated with Soft Gamma Repeater (SGR) bursts. This is the first
search sensitive to neutron star f-modes, usually considered the most efficient
GW emitting modes. We find no evidence of GWs associated with any SGR burst in
a sample consisting of the 27 Dec. 2004 giant flare from SGR 1806-20 and 190
lesser events from SGR 1806-20 and SGR 1900+14 which occurred during the first
year of LIGO's fifth science run. GW strain upper limits and model-dependent GW
emission energy upper limits are estimated for individual bursts using a
variety of simulated waveforms. The unprecedented sensitivity of the detectors
allows us to set the most stringent limits on transient GW amplitudes published
to date. We find upper limit estimates on the model-dependent isotropic GW
emission energies (at a nominal distance of 10 kpc) between 3x10^45 and 9x10^52
erg depending on waveform type, detector antenna factors and noise
characteristics at the time of the burst. These upper limits are within the
theoretically predicted range of some SGR models.Comment: 6 pages, 1 Postscript figur
All-sky LIGO Search for Periodic Gravitational Waves in the Early S5 Data
We report on an all-sky search with the LIGO detectors for periodic
gravitational waves in the frequency range 50--1100 Hz and with the frequency's
time derivative in the range -5.0E-9 Hz/s to zero. Data from the first eight
months of the fifth LIGO science run (S5) have been used in this search, which
is based on a semi-coherent method (PowerFlux) of summing strain power.
Observing no evidence of periodic gravitational radiation, we report 95%
confidence-level upper limits on radiation emitted by any unknown isolated
rotating neutron stars within the search range. Strain limits below 1.E-24 are
obtained over a 200-Hz band, and the sensitivity improvement over previous
searches increases the spatial volume sampled by an average factor of about 100
over the entire search band. For a neutron star with nominal equatorial
ellipticity of 1.0E-6, the search is sensitive to distances as great as 500
pc--a range that could encompass many undiscovered neutron stars, albeit only a
tiny fraction of which would likely be rotating fast enough to be accessible to
LIGO. This ellipticity is at the upper range thought to be sustainable by
conventional neutron stars and well below the maximum sustainable by a strange
quark star.Comment: 6 pages, 1 figur
Astrophysically Triggered Searches for Gravitational Waves: Status and Prospects
In gravitational-wave detection, special emphasis is put onto searches that
focus on cosmic events detected by other types of astrophysical observatories.
The astrophysical triggers, e.g. from gamma-ray and X-ray satellites, optical
telescopes and neutrino observatories, provide a trigger time for analyzing
gravitational wave data coincident with the event. In certain cases the
expected frequency range, source energetics, directional and progenitor
information is also available. Beyond allowing the recognition of gravitational
waveforms with amplitudes closer to the noise floor of the detector, these
triggered searches should also lead to rich science results even before the
onset of Advanced LIGO. In this paper we provide a broad review of LIGO's
astrophysically triggered searches and the sources they target
Stacked Search for Gravitational Waves from the 2006 SGR 1900+14 Storm
We present the results of a LIGO search for short-duration gravitational
waves (GWs) associated with the 2006 March 29 SGR 1900+14 storm. A new search
method is used, "stacking'' the GW data around the times of individual
soft-gamma bursts in the storm to enhance sensitivity for models in which
multiple bursts are accompanied by GW emission. We assume that variation in the
time difference between burst electromagnetic emission and potential burst GW
emission is small relative to the GW signal duration, and we time-align GW
excess power time-frequency tilings containing individual burst triggers to
their corresponding electromagnetic emissions. We use two GW emission models in
our search: a fluence-weighted model and a flat (unweighted) model for the most
electromagnetically energetic bursts. We find no evidence of GWs associated
with either model. Model-dependent GW strain, isotropic GW emission energy
E_GW, and \gamma = E_GW / E_EM upper limits are estimated using a variety of
assumed waveforms. The stacking method allows us to set the most stringent
model-dependent limits on transient GW strain published to date. We find E_GW
upper limit estimates (at a nominal distance of 10 kpc) of between 2x10^45 erg
and 6x10^50 erg depending on waveform type. These limits are an order of
magnitude lower than upper limits published previously for this storm and
overlap with the range of electromagnetic energies emitted in SGR giant flares.Comment: 7 pages, 3 figure
First joint search for gravitational-wave bursts in LIGO and GEO600 data
We present the results of the first joint search for gravitational-wave
bursts by the LIGO and GEO600 detectors. We search for bursts with
characteristic central frequencies in the band 768 to 2048 Hz in the data
acquired between the 22nd of February and the 23rd of March, 2005 (fourth LSC
Science Run - S4). We discuss the inclusion of the GEO600 data in the
Waveburst-CorrPower pipeline that first searches for coincident excess power
events without taking into account differences in the antenna responses or
strain sensitivities of the various detectors. We compare the performance of
this pipeline to that of the coherent Waveburst pipeline based on the maximum
likelihood statistic. This likelihood statistic is derived from a coherent sum
of the detector data streams that takes into account the antenna patterns and
sensitivities of the different detectors in the network. We find that the
coherentWaveburst pipeline is sensitive to signals of amplitude 30 - 50%
smaller than the Waveburst-CorrPower pipeline. We perform a search for
gravitational-wave bursts using both pipelines and find no detection candidates
in the S4 data set when all four instruments were operating stably.Comment: 30 pages, 8 figure
- …