878 research outputs found

    Correlation of multiplicative functions over function fields

    Full text link
    In this article we study the asymptotic behaviour of the correlation functions over polynomial ring Fq[x]\mathbb{F}_q[x]. Let Mn,q\mathcal{M}_{n, q} and Pn,q\mathcal{P}_{n, q} be the set of all monic polynomials and monic irreducible polynomials of degree nn over Fq\mathbb{F}_q respectively. For multiplicative functions ψ1\psi_1 and ψ2\psi_2 on Fq[x]\mathbb{F}_q[x], we obtain asymptotic formula for the following correlation functions for a fixed qq and nβ†’βˆžn\to \infty \begin{align*} &S_{2}(n, q):=\displaystyle\sum_{f\in \mathcal{M}_{n, q}}\psi_1(f+h_1) \psi_2(f+h_2), \\ &R_2(n, q):=\displaystyle\sum_{P\in \mathcal{P}_{n, q}}\psi_1(P+h_1)\psi_2(P+h_2), \end{align*} where h1,h2h_1, h_2 are fixed polynomials of degree <n<n over Fq\mathbb{F}_q. As a consequence, for real valued additive functions ψ1~\tilde{\psi_1} and ψ2~\tilde{\psi_2} on Fq[x]\mathbb{F}_q[x] we show that for a fixed qq and nβ†’βˆžn\to \infty, the following distribution functions \begin{align*} &\frac{1}{|\mathcal{M}_{n, q}|}\Big|\{f\in \mathcal{M}_{n, q} : \tilde{\psi_1}(f+h_1)+\tilde{\psi_2}(f+h_2)\leq x\}\Big|,\\ & \frac{1}{|\mathcal{P}_{n, q}|}\Big|\{P\in \mathcal{P}_{n, q} : \tilde{\psi_1}(P+h_1)+\tilde{\psi_2}(P+h_2)\leq x\}\Big| \end{align*} converges weakly towards a limit distribution.Comment: 24 pages; Comments are welcom
    • …
    corecore