6 research outputs found

    Asymptotically AdS Magnetic Branes in (n+1)-dimensional Dilaton Gravity

    Full text link
    We present a new class of asymptotically AdS magnetic solutions in (n+1n+1)-dimensional dilaton gravity in the presence of an appropriate combination of three Liouville-type potentials. This class of solutions is asymptotically AdS in six and higher dimensions and yields a spacetime with longitudinal magnetic field generated by a static brane. These solutions have no curvature singularity and no horizons but have a conic geometry with a deficit angle. We find that the brane tension depends on the dilaton field and approaches a constant as the coupling constant of dilaton field goes to infinity. We generalize this class of solutions to the case of spinning magnetic solutions and find that, when one or more rotation parameters are nonzero, the brane has a net electric charge which is proportional to the magnitude of the rotation parameters. Finally, we use the counterterm method inspired by AdS/CFT correspondence and compute the conserved quantities of these spacetimes. We found that the conserved quantities do not depend on the dilaton field, which is evident from the fact that the dilaton field vanishes on the boundary at infinity.Comment: 15 page

    Magnetic Branes in Gauss-Bonnet Gravity

    Full text link
    We present two new classes of magnetic brane solutions in Einstein-Maxwell-Gauss-Bonnet gravity with a negative cosmological constant. The first class of solutions yields an (n+1)(n+1)-dimensional spacetime with a longitudinal magnetic field generated by a static magnetic brane. We also generalize this solution to the case of spinning magnetic branes with one or more rotation parameters. We find that these solutions have no curvature singularity and no horizons, but have a conic geometry. In these spacetimes, when all the rotation parameters are zero, the electric field vanishes, and therefore the brane has no net electric charge. For the spinning brane, when one or more rotation parameters are non zero, the brane has a net electric charge which is proportional to the magnitude of the rotation parameter. The second class of solutions yields a spacetime with an angular magnetic field. These solutions have no curvature singularity, no horizon, and no conical singularity. Again we find that the net electric charge of the branes in these spacetimes is proportional to the magnitude of the velocity of the brane. Finally, we use the counterterm method in the Gauss-Bonnet gravity and compute the conserved quantities of these spacetimes.Comment: 17 pages, No figure, The version to be published in Phys. Rev.
    corecore