3,551 research outputs found

    `Standard' Cosmological model & beyond with CMB

    Full text link
    Observational Cosmology has indeed made very rapid progress in the past decade. The ability to quantify the universe has largely improved due to observational constraints coming from structure formation Measurements of CMB anisotropy and, more recently, polarization have played a very important role. Besides precise determination of various parameters of the `standard' cosmological model, observations have also established some important basic tenets that underlie models of cosmology and structure formation in the universe -- `acausally' correlated initial perturbations in a flat, statistically isotropic universe, adiabatic nature of primordial density perturbations. These are consistent with the expectation of the paradigm of inflation and the generic prediction of the simplest realization of inflationary scenario in the early universe. Further, gravitational instability is the established mechanism for structure formation from these initial perturbations. The signature of primordial perturbations observed as the CMB anisotropy and polarization is the most compelling evidence for new, possibly fundamental, physics in the early universe. The community is now looking beyond the estimation of parameters of a working `standard' model of cosmology for subtle, characteristic signatures from early universe physics.Comment: 16 pages, 6 figures, Plenary talk, Proc. of GR-19, Mexico City, Mexico (Jul 5-9, 2010). To appear in a special issue in Class. Q. Gra

    Mahanine exerts in vitro and in vivo antileishmanial activity by modulation of redox homeostasis

    Get PDF
    Earlier we have established a carbazole alkaloid (mahanine) isolated from an Indian edible medicinal plant as an anticancer agent with minimal effect on normal cells. Here we report for the first time that mahanine-treated drug resistant and sensitive virulent Leishmania donovani promastigotes underwent apoptosis through phosphatidylserine externalization, DNA fragmentation and cell cycle arrest. An early induction of reactive oxygen species (ROS) suggests that the mahanine-induced apoptosis was mediated by oxidative stress. Additionally, mahanine-treated Leishmania-infected macrophages exhibited anti-amastigote activity by nitric oxide (NO)/ROS generation along with suppression of uncoupling protein 2 and Th1-biased cytokines response through modulating STAT pathway. Moreover, we have demonstrated the interaction of a few antioxidant enzymes present in parasite with mahanine through molecular modeling. Reduced genetic and protein level expression of one such enzyme namely ascorbate peroxidase was also observed in mahanine-treated promastigotes. Furthermore, oral administration of mahanine in acute murine model exhibited almost complete reduction of parasite burden, upregulation of NO/iNOS/ROS/IL-12 and T cell proliferation. Taken together, we have established a new function of mahanine as a potent antileishmanial molecule, capable of inducing ROS and exploit antioxidant enzymes in parasite along with modulation of host’s immune response which could be developed as an inexpensive and nontoxic therapeutics either alone or in combination

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore