260 research outputs found

    The Uniqueness of Achatina fulica in its Evolutionary Success

    Get PDF
    The increasing load of environmental pollutants poses a serious threat over the globe. In this vulnerable situation, it is essential to have alternative sources of medicines, may be from invertebrates. Among invertebrates, although molluscs are known for their consumption as food and ethno‐medicinal use, the importance of these animals is still overlooked. Presently attention has been geared toward molluscs including Achatina fulica which are now considered as one of the most evolutionary successful animals. During the last few decades, researchers are trying to decipher their complex immune system to harvest valuable molecules to treat human diseases. In the present review, the existence of important immunological factors in Achatina is discussed addressing the coagulation system, innate immune molecules, bioactive proteins and lastly the enigmatic C‐reactive proteins

    The Discrete Voronoi game in ℝ\u3csup\u3e2\u3c/sup\u3e

    Get PDF
    In this paper we study the last round of the discrete Voronoi game in ℝ2, a problem which is also of independent interest in competitive facility location. The game consists of two players P1 and P2, and a finite set U of users in the plane. The players have already placed two disjoint sets of facilities F and S, respectively, in the plane. The game begins with P1 placing a new facility followed by P2 placing another facility, and the objective of both the players is to maximize their own total payoffs. In this paper we propose polynomial time algorithms for determining the optimal strategies of both the players for arbitrarily located existing facilities F and S. We show that in the L1 and the L∞ metrics, the optimal strategy of P2, given any placement of P1, can be found in O(n log n) time, and the optimal strategy of P1 can be found in O(n5 log n) time. In the L2 metric, the optimal strategies of P2 and P1 can be obtained in O(n2) and O(n2) and O(n8) times, respectively

    IN VITRO ANTI-DIABETIC AND ANTI-OXIDANT ACTIVITIES OF ETHANOL EXTRACT OF TINOSPORA SINENSIS

    Get PDF
    Objective: The aim of the present study was to evaluate the alpha (α)-amylase and alpha (α)-glucosidase inhibitory activities and in vitro antioxidant activities of the 80 % aqueous ethanol extracts of Tinosporasinensis Lour (Merr.).Methods: The 80% aq. ethanol extract of the plant was prepared. The plant extract was examined for its antioxidant activity by using free radical 1,1-diphenyl-2-picryl hydrazyl (DPPH) scavenging method, ABTS radical scavenging ability, reducing power capacity, estimation of total phenolic content, flavonoid content and flavonol content. Different concentrations (2, 4, 8,10and 15 μg/ml) of the extract was subjected to α-amylase inhibitory and α-glucosidase inhibitory activities and IC50were calculated.Results: The study revealed that the different concentrations of the plant extract possessed a very good amount of total phenolics, flavonoid and flavonol and exhibited potent radical scavenging activity using DPPH and ABTS as a substrate. The ethanol extracts exhibited significant α-amylase and α-glucosidase inhibitory activities with an IC50 value1.093µg and 1.04µg dry extract respectively and well compared with standard acarbose drug.Conclusion: Thus, it could be concluded that due to the presence of antioxidant components the plant extracts could be used for the treatment of hyperglycemia, diabetes and the related condition of oxidative stress. This knowledge will be useful in finding more potent components from the natural resources for the clinical development of antidiabetic therapeutics

    Ube4A maintains metabolic homeostasis and facilitates insulin signaling in vivo

    Get PDF
    OBJECTIVE: Defining the regulators of cell metabolism and signaling is essential to design new therapeutic strategies in obesity and NAFLD/NASH. E3 ubiquitin ligases control diverse cellular functions by ubiquitination-mediated regulation of protein targets, and thus their functional aberration is associated with many diseases. The E3 ligase Ube4A has been implicated in human obesity, inflammation, and cancer. However, its in vivo function is unknown, and no animal models are available to study this novel protein. METHODS: A whole-body Ube4A knockout (UKO) mouse model was generated, and various metabolic parameters were compared in chow- and high fat diet (HFD)-fed WT and UKO mice, and in their liver, adipose tissue, and serum. Lipidomics and RNA-Seq studies were performed in the liver samples of HFD-fed WT and UKO mice. Proteomic studies were conducted to identify Ube4A\u27s targets in metabolism. Furthermore, a mechanism by which Ube4A regulates metabolism was identified. RESULTS: Although the body weight and composition of young, chow-fed WT and UKO mice are similar, the knockouts exhibit mild hyperinsulinemia and insulin resistance. HFD feeding substantially augments obesity, hyperinsulinemia, and insulin resistance in both sexes of UKO mice. HFD-fed white and brown adipose tissue depots of UKO mice have increased insulin resistance and inflammation and reduced energy metabolism. Moreover, Ube4A deletion exacerbates hepatic steatosis, inflammation, and liver injury in HFD-fed mice with increased lipid uptake and lipogenesis in hepatocytes. Acute insulin treatment resulted in impaired activation of the insulin effector protein kinase Akt in liver and adipose tissue of chow-fed UKO mice. We identified the Akt activator protein APPL1 as a Ube4A interactor. The K63-linked ubiquitination (K63-Ub) of Akt and APPL1, known to facilitate insulin-induced Akt activation, is impaired in UKO mice. Furthermore, Ube4A K63-ubiquitinates Akt in vitro. CONCLUSION: Ube4A is a novel regulator of obesity, insulin resistance, adipose tissue dysfunction and NAFLD, and preventing its downregulation may ameliorate these diseases

    DUALITY IN INVEX PROGRAMMING PROBLEM IN HILBERT SPACE

    Get PDF
    In this paper the concept of duality has been introduced for Invex Programming Problem in infinite dimensional Hilbert Spaces. A generalization of the concept of Wolfe-duality has been proposed for such class of problems. Some important theorems regarding the characterization of the dual problems have also been discussed

    Live Salmonella modulate expression of Rab proteins to persist in a specialized compartment and escape transport to lysosomes

    Get PDF
    We investigated the intracellular route of Salmonella in macrophages to determine a plausible mechanism for their survival in phagocytes. Western blot analysis of isolated phagosomes using specific antibodies revealed that by 5 min after internalization dead Salmonella-containing phagosomes acquire transferrin receptors (a marker for early endosomes), whereas by 30 min the dead bacteria are found in vesicles carrying the late endosomal markers cation-dependent mannose 6-phosphate receptors, Rab7 and Rab9. In contrast, live Salmonella-containing phagosomes (LSP) retain a significant amount of Rab5 and transferrin receptor until 30 min, selectively deplete Rab7 and Rab9, and never acquire mannose 6-phosphate receptors even 90 min after internalization. Retention of Rab5 and Rab18 and selective depletion of Rab7 and Rab9 presumably enable the LSP to avoid transport to lysosomes through late endosomes. The presence of immature cathepsin D (48kDa) and selective depletion of the vacuolar ATPase in LSP presumably contributes to the less acidic pH of LSP. In contrast, proteolytically processed cathepsin D (Mr17,000) was detected by 30 min on the dead Salmonella-containing phagosomes. Morphological analysis also revealed that after uptake by macrophages, the dead Salmonella are transported to lysosomes, whereas the live bacteria persist in compartments that avoid fusion with lysosomes, indicating that live Salmonella bypass the normal endocytic route targeted to lysosomes and mature in a specialized compartment
    corecore