8 research outputs found

    Nanotechnology Application and Intellectual Property Right Prospects of Mammalian Cell Culture

    Get PDF
    The significant challenges faced by modern-day medicine include designing a target-specific drug delivery system with a controlled release mechanism, having the potential to avoid opsonization and reduce bio-toxicity. Nanoparticles are materials with nanoscale dimensions and maybe natural and synthetic in origin. Engineered nano-sized materials are playing an indispensable role in the field of nanomedicine and nanobiotechnology. Besides, engineered nano-sized particles impart therapeutic applications with enhanced specificity because of their unique bespoke properties. Moreover, such application-customized nanoparticles offer an enormous possibility for their compatibility with different biological molecules like proteins, genetic materials, cell membranes, and organelles at the nano-bio frame. Besides, surface functionalization with targeting moieties such as small molecule ligands, monoclonal antibodies, aptamers, cell-penetrating peptides, and proteins facilitate nanoparticle-based specific tissue targeting. This review summarizes some of the advances in nanoparticle-based therapeutics and theranostics. A better understanding of idealistic preparation methods, physicochemical attributes, surface functionalization, biocompatibility can empower the potential translation of nanomaterials from the ‘bench-to-bedside’. In modern-day medicine, engineered nanoparticles have a wide range of demands ranging from bio-imaging, theranostics, tissue engineering, sensors, drug and nucleic acid delivery, and other pharmaceuticals applications. 2D and 3D mammalian cell-based assays are widely used to model diseases, screening of drugs, drug discovery, and toxicity analyses. Recent advances in cell culture technology and associated progress in nanotechnology have enabled researchers to study a wide variety of physiologically relevant questions. This chapter explores the properties of nanoparticles, different targeted delivery methods, biological analysis, and theranostics. Moreover, this chapter also emphasizes biosafety and bioethics associated with mammalian cell culture and discusses the significance of intellectual property rights from an industrial and academic perspective

    Lipid-polymer hybrid nanoparticles as a next-generation drug delivery platform: state of the art, emerging technologies, and perspectives.

    Get PDF
    Lipid-polymer hybrid nanoparticles (LPHNPs) are next-generation core-shell nanostructures, conceptually derived from both liposome and polymeric nanoparticles (NPs), where a polymer core remains enveloped by a lipid layer. Although they have garnered significant interest, they remain not yet widely exploited or ubiquitous. Recently, a fundamental transformation has occurred in the preparation of LPHNPs, characterized by a transition from a two-step to a one-step strategy, involving synchronous self-assembly of polymers and lipids. Owing to its two-in-one structure, this approach is of particular interest as a combinatorial drug delivery platform in oncology. In particular, the outer surface can be decorated in multifarious ways for active targeting of anticancer therapy, delivery of DNA or RNA materials, and use as a diagnostic imaging agent. This review will provide an update on recent key advancements in design, synthesis, and bioactivity evaluation as well as discussion of future clinical possibilities of LPHNPs

    Recent Progress in the Theranostics Application of Nanomedicine in Lung Cancer

    Get PDF
    Lung cancer is one of the leading causes of cancer-related death worldwide. Non-small cell lung cancer (NSCLC) causes around 80% to 90% of deaths. The lack of an early diagnosis and inefficiency in conventional therapies causes poor prognosis and overall survival of lung cancer patients. Recent progress in nanomedicine has encouraged the development of an alternative theranostics strategy using nanotechnology. The interesting physico-chemical properties in the nanoscale have generated immense advantages for nanoparticulate systems for the early detection and active delivery of drugs for a better theranostics strategy for lung cancer. This present review provides a detailed overview of the recent progress in the theranostics application of nanoparticles including liposomes, polymeric, metal and bio-nanoparticles. Further, we summarize the advantages and disadvantages of each approach considering the improvement for the lung cancer theranostics

    Organoids and Commercialization

    No full text
    Organoids are 3D miniature tissue mimics and have been effectively used for various purposes, including disease modeling, various drug screening, mechanism of pathogenesis, stem cell research, and tumor immunology. Organoids are as varied as the body’s tissues and organs and have enormous economic potential. They can open new ways to tailored therapy and precision medicine. In clinical investigations, patient-derived organoids have been used to predict patient responses to therapeutic regimens and perhaps improve cancer treatment outcomes. Recent developments in stem cell research and genomic technologies have led to breakthrough innovations in organoid bioengineering, large-scale manufacturing, biobanking, and commercialization. This chapter reviews the notion of organoid biobanking, companies involved and the commercialization aspect, and ethical considerations
    corecore