2 research outputs found

    Anti-Biofilm Effect of Bacteriophages and Antibiotics against Uropathogenic Escherichia coli

    Get PDF
    Publisher Copyright: © 2022 by the authors.Escherichia coli is a common cause of biofilm-associated urinary tract infections. Bacteria inside the biofilm are more resistant to antibiotics. Six E. coli strains isolated from patients with urinary tract infections were screened for biofilm-forming capability and antimicrobial susceptibility. Two of the most significant biofilm-producing strains were selected for minimal inhibitory concentration and minimal biofilm eradication concentration in vitro testing using amoxicillin-clavulanic acid, ciprofloxacin, and three commercial bacteriophage cocktails (Pyobacteriophag, Ses, and Intesti). In case of a low phage effect, an adaptation procedure was performed. Although the biofilms formed by strain 021UR were resistant to amoxicillin-clavulanic acid and ciprofloxacin, the three phage cocktails were able to reduce biofilm formation. In contrast, phages did not affect the 01206UR strain against planktonic and biofilm-forming cells. After Pyobacteriophag adaptation, the effect improved, and, regardless of the concentration, the adapted phage cocktail could destroy both planktonic cells and the biofilm of strain 01206UR. Bacteriophages capable of killing bacteria in biofilms can be used as an alternative to antibiotics. However, each case should be considered individually due to the lack of clinical trials for phage therapy. Antimicrobial and phage susceptibility should be determined in biofilm models before treatment to achieve the desired anti-biofilm effect.publishersversionPeer reviewe

    Successful Bacteriophage-Antibiotic Combination Therapy against Multidrug-Resistant Pseudomonas aeruginosa Left Ventricular Assist Device Driveline Infection

    Get PDF
    Publisher Copyright: © 2023 by the authors.There is considerable interest in the use of bacteriophages (phages) to treat Pseudomonas aeruginosa infections associated with left ventricular assist devices (LVADs). These infections are often challenging to manage due to high rates of multidrug resistance and biofilm formation, which could potentially be overcome with the use of phages. We report a case of a 54-year-old man with relapsing multidrug-resistant P. aeruginosa LVAD driveline infection, who was treated with a combination of two lytic antipseudomonal phages administered intravenously and locally. Treatment was combined with LVAD driveline repositioning and systemic antibiotic administration, resulting in a successful outcome with clinical cure and eradication of the targeted bacteria. However, laboratory in vitro models showed that phages alone could not eradicate biofilms but could prevent biofilm formation. Phage-resistant bacterial strains evolved in biofilm models and showed decreased susceptibility to the phages used. Further studies are needed to understand the complexity of phage resistance and the interaction of phages and antibiotics. Our results indicate that the combination of phages, antibiotics, and surgical intervention can have great potential in treating LVAD-associated infections. More than 21 months post-treatment, our patient remains cured of the infection.publishersversionPeer reviewe
    corecore