1,577 research outputs found
Causal vs. Noncausal Description of Nonlinear Wave Mixing; Resolving the Damping-Sign Controversy
Frequency-domain nonlinear wave mixing processes may be described either
using response functions whereby the signal is generated after all interactions
with the incoming fields, or in terms of scattering amplitudes where all fields
are treated symetrically with no specific time ordering. Closed Green's
function expressions derived for the two types of signals have different
analytical properties. The recent controversy regarding the sign of radiative
damping in the linear (Kramers Heisenberg) formula is put in a broader context
Zero-Range Processes with Multiple Condensates: Statics and Dynamics
The steady-state distributions and dynamical behaviour of Zero Range
Processes with hopping rates which are non-monotonic functions of the site
occupation are studied. We consider two classes of non-monotonic hopping rates.
The first results in a condensed phase containing a large (but subextensive)
number of mesocondensates each containing a subextensive number of particles.
The second results in a condensed phase containing a finite number of extensive
condensates. We study the scaling behaviour of the peak in the distribution
function corresponding to the condensates in both cases. In studying the
dynamics of the condensate we identify two timescales: one for creation, the
other for evaporation of condensates at a given site. The scaling behaviour of
these timescales is studied within the Arrhenius law approach and by numerical
simulations.Comment: 25 pages, 18 figure
Photon Statistics for Single Molecule Non-Linear Spectroscopy
We consider the theory of the non-linear spectroscopy for a single molecule
undergoing stochastic dynamics and interacting with a sequence of two laser
pulses. General expressions for photon counting statistics are obtained, and an
exact solution to the problem of the Kubo-Anderson process is found. In the
limit of impulsive pulses the information on the photon statistics is contained
in the molecule's dipole correlation function. The selective limit where
temporal resolution is maintained, the semi-classical approximation and the
fast modulation limit exhibit general behaviors of this new type of
spectroscopy. We show how the design of the external field leads to rich
insights on dynamics of individual molecules which are different than those
found for an ensemble
Coarsening of a Class of Driven Striped Structures
The coarsening process in a class of driven systems exhibiting striped
structures is studied. The dynamics is governed by the motion of the driven
interfaces between the stripes. When two interfaces meet they coalesce thus
giving rise to a coarsening process in which l(t), the average width of a
stripe, grows with time. This is a generalization of the reaction-diffusion
process A + A -> A to the case of extended coalescing objects, namely, the
interfaces. Scaling arguments which relate the coarsening process to the
evolution of a single driven interface are given, yielding growth laws for
l(t), for both short and long time. We introduce a simple microscopic model for
this process. Numerical simulations of the model confirm the scaling picture
and growth laws. The results are compared to the case where the stripes are not
driven and different growth laws arise
X-Ray sum frequency generation; direct imaging of ultrafast electron dynamics
X-ray diffraction from molecules in the ground state produces an image of
their charge density, and time-resolved X-ray diffraction can thus monitor the
motion of the nuclei. However, the density change of excited valence electrons
upon optical excitation can barely be monitored with regular diffraction
techniques due to the overwhelming background contribution of the core
electrons. We present a nonlinear X-ray technique made possible by novel free
electron laser sources, which provides a spatial electron density image of
valence electron excitations. The technique, sum frequency generation carried
out with a visible pump and a broadband X-ray diffraction pulse, yields
snapshots of the transition charge densities, which represent the electron
density variations upon optical excitation. The technique is illustrated by ab
initio simulations of transition charge density imaging for the optically
induced electronic dynamics in a donor/acceptor substituted stilbene
Multiple Core-Hole Coherence in X-Ray Four-Wave-Mixing Spectroscopies
Correlation-function expressions are derived for the coherent nonlinear
response of molecules to three resonant ultrafast pulses in the x-ray regime.
The ability to create two-core-hole states with controlled attosecond timing in
four-wave-mixing and pump probe techniques should open up new windows into the
response of valence electrons, which are not available from incoherent x-ray
Raman and fluorescence techniques. Closed expressions for the necessary
four-point correlation functions are derived for the electron-boson model by
using the second order cumulant expansion to describe the fluctuating
potentials. The information obtained from multidimensional nonlinear techniques
could be used to test and refine this model, and establish an anharmonic
oscillator picture for electronic excitations
Monitoring Nonadiabatic Electron-Nuclear Dynamics in Molecules by Attosecond Streaking of Photoelectrons
Streaking of photoelectrons has long been used for the temporal
characterization of attosecond extreme ultraviolet pulses. When the
time-resolved photoelectrons originate from a coherent superposition of
electronic states, they carry an additional phase information, which can be
retrieved by the streaking technique. In this contribution we extend the
streaking formalism to include coupled electron and nuclear dynamics in
molecules as well as initial coherences and demonstrate how it offers a novel
tool to monitor non-adiabatic dynamics as it occurs in the vicinity of conical
intersections and avoided crossings. Streaking can enhance the time resolution
and provide direct signatures of electronic coherences, which affect many
primary photochemical and biological events
Slow Coarsening in a Class of Driven Systems
The coarsening process in a class of driven systems is studied. These systems
have previously been shown to exhibit phase separation and slow coarsening in
one dimension. We consider generalizations of this class of models to higher
dimensions. In particular we study a system of three types of particles that
diffuse under local conserving dynamics in two dimensions. Arguments and
numerical studies are presented indicating that the coarsening process in any
number of dimensions is logarithmically slow in time. A key feature of this
behavior is that the interfaces separating the various growing domains are
smooth (well approximated by a Fermi function). This implies that the
coarsening mechanism in one dimension is readily extendible to higher
dimensions.Comment: submitted to EPJB, 13 page
Many-body Green's function approach to attosecond nonlinear X-ray spectroscopy
Closed expressions are derived for resonant multidimensional X-ray
spectroscopy using the quasiparticle nonlinear exciton representation of
optical response. This formalism is applied to predict coherent four wave
mixing signals which probe single and two core-hole states. Nonlinear X-ray
signals are compactly expressed in terms of one- and two- particle Green's
functions which can be obtained from the solution of Hedin-like equations at
the level.Comment: 10 pages and 3 figures (To appear in Physical Review B
- …