3 research outputs found

    Leptospirosis as a cause of fever associated with jaundice in the Democratic Republic of the Congo.

    Get PDF
    BACKGROUND: Fever with jaundice is a common symptom of some infectious diseases. In public health surveillance within the Democratic Republic of the Congo (DRC), yellow fever is the only recognized cause of fever with jaundice. However, only 5% of the surveillance cases are positive for yellow fever and thus indicate the involvement of other pathogens. Leptospira spp. are the causative agents of leptospirosis, a widespread bacterial zoonosis, a known cause of fever with jaundice. This study aimed to determine the seropositivity of anti-Leptospira antibodies among suspected yellow fever cases and map the geographical distribution of possible leptospirosis in the DRC. METHODS: We conducted a retrospective study using 1,300 samples from yellow fever surveillance in the DRC from January 2017 to December 2018. Serum samples were screened for the presence of IgM against Leptospira spp. by a whole cell-based IgM ELISA (Patoc-IgM ELISA) at the Institut National de Recherche Biomedicale in Kinshasa (INRB) according to World Health Organization (WHO) guidance. Exploratory univariable and multivariable logistic regression analyses were undertaken to assess associations between socio-demographic factors and the presence of Leptospira IgM. RESULTS: Of the 1,300 serum samples screened, 88 (7%) showed evidence of IgM against Leptospira spp. Most positive cases (34%) were young adult males in the 20-29-year group. There were statistically significant associations between having Leptospira IgM antibodies, age, sex, and living area. Observed positive cases were mostly located in urban settings, and the majority lived in the province of Kinshasa. There was a statistically significant association between seasonality and IgM Leptospira spp. positivity amongst those living in Kinshasa, where most of the positive cases occurred during the rainy season. CONCLUSIONS: This study showed that leptospirosis is likely an overlooked cause of unexplained cases of fever with jaundice in the DRC and highlights the need to consider leptospirosis in the differential diagnosis of fever with jaundice, particularly in young adult males. Further studies are needed to identify animal reservoirs, associated risk factors, and the burden of human leptospirosis in the DRC

    Development and Evaluation of Quantitative Immunoglobulin G Enzyme-Linked Immunosorbent Assay for the Diagnosis of Coronavirus Disease 2019 Using Truncated Recombinant Nucleocapsid Protein as Assay Antigen

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). Real-time RT-PCR is the most commonly used method for COVID-19 diagnosis. However, serological assays are urgently needed as complementary tools to RT-PCR. Hachim et al. 2020 and Burbelo et al. 2020 demonstrated that anti-nucleocapsid(N) SARS-CoV-2 antibodies are higher and appear earlier than the spike antibodies. Additionally, cross-reactive antibodies against N protein are more prevalent than those against spike protein. We developed a less cross-reactive immunoglobulin G (IgG) indirect ELISA by using a truncated recombinant SARS-CoV-2 N protein as assay antigen. A highly conserved region of coronaviruses N protein was deleted and the protein was prepared using an E. coli protein expression system. A total of 177 samples collected from COVID-19 suspected cases and 155 negative control sera collected during the pre-COVID-19 period were applied to evaluate the assay’s performance, with the plaque reduction neutralization test and the commercial SARS-CoV-2 spike protein IgG ELISA as gold standards. The SARS-CoV-2 N truncated protein-based ELISA showed similar sensitivity (91.1% vs. 91.9%) and specificity (93.8% vs. 93.8%) between the PRNT and spike IgG ELISA, as well as also higher specificity compared to the full-length N protein (93.8% vs. 89.9%). Our ELISA can be used for the diagnosis and surveillance of COVID-19

    Development and Evaluation of Quantitative Immunoglobulin G Enzyme-Linked Immunosorbent Assay for the Diagnosis of Coronavirus Disease 2019 Using Truncated Recombinant Nucleocapsid Protein as Assay Antigen

    No full text
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). Real-time RT-PCR is the most commonly used method for COVID-19 diagnosis. However, serological assays are urgently needed as complementary tools to RT-PCR. Hachim et al. 2020 and Burbelo et al. 2020 demonstrated that anti-nucleocapsid(N) SARS-CoV-2 antibodies are higher and appear earlier than the spike antibodies. Additionally, cross-reactive antibodies against N protein are more prevalent than those against spike protein. We developed a less cross-reactive immunoglobulin G (IgG) indirect ELISA by using a truncated recombinant SARS-CoV-2 N protein as assay antigen. A highly conserved region of coronaviruses N protein was deleted and the protein was prepared using an E. coli protein expression system. A total of 177 samples collected from COVID-19 suspected cases and 155 negative control sera collected during the pre-COVID-19 period were applied to evaluate the assay’s performance, with the plaque reduction neutralization test and the commercial SARS-CoV-2 spike protein IgG ELISA as gold standards. The SARS-CoV-2 N truncated protein-based ELISA showed similar sensitivity (91.1% vs. 91.9%) and specificity (93.8% vs. 93.8%) between the PRNT and spike IgG ELISA, as well as also higher specificity compared to the full-length N protein (93.8% vs. 89.9%). Our ELISA can be used for the diagnosis and surveillance of COVID-19
    corecore