6 research outputs found
Performance optimization of a CNC machine through exploration of the timed state space
Flexible production units provide very efficient mechanisms to adapt the type and production rate according to fluctuations in demand. The optimal sequence of the different manufacturing tasks in each machine is a challenging problem that can deal with important productivity benefits
Improving airport performance through a model-based analysis and optimization approach
Traditionally airport systems have been studied using an approach in which the different elements of the system are studied independently. Until recently scientific community has put attention in developing models and techniques that study the system using holistic approaches for understanding cause and effect relationships of the integral system. This chapter presents a case of an airport in which the authors have implemented an approach for improving the turnaround time of the operation. The novelty of the approach is that it uses a combination of simulation, parameter analysis and optimization for getting to the best amount of vehicles that minimize the turnaround time of the airport under study. In addition, the simulation model is such that it includes the most important elements within the aviation system, such as terminal manoeuvring area, runway, taxi networks, and ground handling operation. The results show clearly that the approach is suitable for a complex system in which the amount of variables makes it intractable for getting good solutions in reasonable time
Improving airport performance through a model-based analysis and optimization approach
Traditionally airport systems have been studied using an approach in which the different elements of the system are studied independently. Until recently scientific community has put attention in developing models and techniques that study the system using holistic approaches for understanding cause and effect relationships of the integral system. This chapter presents a case of an airport in which the authors have implemented an approach for improving the turnaround time of the operation. The novelty of the approach is that it uses a combination of simulation, parameter analysis and optimization for getting to the best amount of vehicles that minimize the turnaround time of the airport under study. In addition, the simulation model is such that it includes the most important elements within the aviation system, such as terminal manoeuvring area, runway, taxi networks, and ground handling operation. The results show clearly that the approach is suitable for a complex system in which the amount of variables makes it intractable for getting good solutions in reasonable time
Airport passenger flow prediction using simulation data farming and machine learning
Passenger flow management is an important issue at many airports around the world. There are high concentrations of passengers arriving and leaving the airport in waves of large volumes in short periods, particularly in big hubs. This might cause congestion in some locations depending on the layout of the terminal building. With a combination of real airport data, as well as synthetic data obtained through an airport simulator, a Long Short-Term Memory Recurrent Neural Network has been implemented to predict the possible trajectories that passengers may travel within the airport depending on user-defined passenger profiles. The aim of this research is to improve passenger flow predictability and situational awareness to make a more efficient use of the airport, that could also positively impact communication with public and private land transport operators