13 research outputs found

    Molecular Modeling Study for Inhibition Mechanism of Human Chymase and Its Application in Inhibitor Design

    Get PDF
    Human chymase catalyzes the hydrolysis of peptide bonds. Three chymase inhibitors with very similar chemical structures but highly different inhibitory profiles towards the hydrolase function of chymase were selected with the aim of elucidating the origin of disparities in their biological activities. As a substrate (angiotensin-I) bound crystal structure is not available, molecular docking was performed to dock the substrate into the active site. Molecular dynamics simulations of chymasecomplexes with inhibitors and substrate were performed to calculate the binding orientation of inhibitors and substrate as well as to characterize conformational changes in the active site. The results elucidate details of the 3D chymase structure as well as the importance of K40 in hydrolase function. Binding mode analysis showed that substitution of a heavier Cl atom at the phenyl ring of most active inhibitor produced a great deal of variation in its orientation causing the phosphinate group to interact strongly with residue K40. Dynamics simulations revealed the conformational variation in region of V36-F41upon substrate and inhibitor binding induced a shift in the location of K40 thus changing its interactions with them. Chymase complexes with the most activecompound and substrate were used for development of a hybrid pharmacophore model which was applied in databases screening. Finally, hits which bound well at the active site, exhibited key interactions and favorable electronic properties were identified as possible inhibitors for chymase. This study not only elucidates inhibitorymechanism of chymase inhibitors but also provides key structural insights which will aid in the rational design of novel potent inhibitors of the enzyme. In general, the strategy applied in the current study could be a promising computational approach and may be generally applicable to drug design for other enzymes

    Student engagement and perceptions of blended-learning of a clinical module in a veterinary degree program.

    Get PDF
    Blended learning has received much interest in higher education as a way to increase learning efficiency and effectiveness. By combining face-to-face teaching with technology-enhanced learning through online resources, students can manage their own learning. Blended methods are of particular interest in professional degree programs such as veterinary medicine in which students need the flexibility to undertake intra- and extramural activities to develop the range of competencies required to achieve professional qualification. Yet how veterinary students engage with blended learning activities and whether they perceive the approach as beneficial is unclear. We evaluated blended learning through review of student feedback on a 4-week clinical module in a veterinary degree program. The module combined face-to-face sessions with online resources. Feedback was collected by means of a structured online questionnaire at the end of the module and log data collected as part of a routine teaching audit. The features of blended learning that support and detract from students’ learning experience were explored using quantitative and qualitative methods. Students perceived a benefit from aspects of face-to-face teaching and technology-enhanced learning resources. Face-to-face teaching was appreciated for practical activities, whereas online resources were considered effective for facilitating module organization and allowing flexible access to learning materials. The blended approach was particularly appreciated for clinical skills in which students valued a combination of visual resources and practical activities. Although we identified several limitations with online resources that need to be addressed when constructing blended courses, blended learning shows potential to enhance student-led learning in clinical courses
    corecore