7 research outputs found

    Discovery of VHE γ\gamma-ray emission from the SNR G54.1+0.3

    Full text link
    We report the discovery of very high energy gamma-ray emission from the direction of the SNR G54.1+0.3 using the VERITAS ground-based gamma-ray observatory. The TeV signal has an overall significance of 6.8σ\sigma and appears point-like given the 5arcminute^{arcminute} resolution of the instrument. The integral flux above 1 TeV is 2.5% of the Crab Nebula flux and significant emission is measured between 250 GeV and 4 TeV, well described by a power-law energy spectrum dN/dE \sim EΓ^{-\Gamma} with a photon index Γ=2.39±0.23stat±0.30sys\Gamma= 2.39\pm0.23_{stat}\pm0.30_{sys}. We find no evidence of time variability among observations spanning almost two years. Based on the location, the morphology, the measured spectrum, the lack of variability and a comparison with similar systems previously detected in the TeV band, the most likely counterpart of this new VHE gamma-ray source is the PWN in the SNR G54.1+0.3. The measured X-ray to VHE gamma-ray luminosity ratio is the lowest among all the nebulae supposedly driven by young rotation-powered pulsars, which could indicate a particle-dominated PWN.Comment: 5 pages, 2 figure, Latex, emulateapj style, accepted by the Astrophysical Journal Letter

    Discovery of very high energy gamma-ray emission from the SNR G54.1+0.3

    Get PDF
    We report the discovery of very high energy (VHE) gamma-ray emission from the direction of the SNR G54.1+ 0.3 using the VERITAS ground-based gamma-ray observatory. The TeV signal has an overall significance of 6.8s and appears pointlike given the resolution of the instrument. The integral flux above 1 TeV is 2.5% of the Crab Nebula flux and significant emission is measured between 250 GeV and 4 TeV, well described by a power-law energy spectrum dN/dE similar to E-Gamma with a photon index Gamma = 2.39 +/- 0.23(stat) +/- 0.30sys. We find no evidence of time variability among observations spanning almost two years. Based on the location, the morphology, the measured spectrum, the lack of variability, and a comparison with similar systems previously detected in the TeV band, the most likely counterpart of this new VHE gamma-ray source is the pulsar wind nebula (PWN) in the SNR G54.1+0.3. The measured X-ray to VHE gamma-ray luminosity ratio is the lowest among all the nebulae supposedly driven by young rotation-powered pulsars, which could indicate a particle-dominated PWN

    BIOINFORMATICS Genomic Sweeping for Hypermethylated Genes

    No full text
    ABSTRACT Motivation: Genes silenced by the aberrent methylation of nearby CpG islands can contribute to the onset or progression of cancer and represent potential biomarkers for diagnosis and prognosis. Relatively few have thus far been validated as hypermethylated in cancer among over 14,000 candidates with promoter region CpG islands. A descriptive set of genes known to be unmethylated in cancer does not exist. This lack of a negative set and a large number of candidates necessitated the development of a new approach to identify novel genes hypermethylated in cancer. Results: We developed a general method, cluster boost, that in an imbalanced data setting predicts new minority class members given limited known samples and a large set of unlabeled samples. Synthetic datasets modeled after the hypermethylated genes data show that cluster boost can successfully identify minority samples within unlabeled data. Using genome sequence features, cluster boost predicted candidate hypermethylated genes among 14,000 genes of unknown status. In primary ovarian cancers, we determined the methylation status for 15 genes with different levels of support for being hypermethlyated. Results indicate cluster boost can accurately identify novel genes hypermethylated in cancer. Availability: Software and datasets are freely available a
    corecore