4 research outputs found

    Utilisation of cattle manure and inorganic fertiliser for food production in central Uganda

    Get PDF
    Cattle manure and inorganic fertiliser use in smallholder peri-urban crop-livestock farms in Uganda was investigated by conducting a survey of 40 farms in the central districts of Wakiso and Kampala. The results showed that the major benefits obtained from cattle manure application were increased yields (52.5 %) and low cost of manure purchase (37.5 %). The major problems associated with its use included weight and bulkiness (75 %), lack of labour (67.5 %), insufficient quantities (55 %), high transportation and application costs (37.5%), enhanced weed infestation (35 %), poor hygienic conditions (32.5 %) and lack of storage facilities to maintain quality attributes of manure (32.5 %). A large number of farmers supplemented the cattle manure with other animal manures, such as poultry (45 %), pig (38 %), goat (33 %) and rabbit (18 %) manures where available. The majority of farmers (95 %) never supplemented manure with inorganic fertiliser claiming that it was expensive in terms of purchase and transportation (90 %) and lack of capital to purchase the fertilisers (67.5 %). Farmers were aware of the benefits of using cattle manure as a source of fertiliser in their crop-livestock production system. However, the nutrient content of cattle manure was low (0.42-0.56 % total N), being attributed to poor handling, collection and storage of manure, insufficient fodder and poor livestock diet, which need better management to maximise nutrient recovery. There was little information available to farmers regarding optimum management and rates of fertiliser application (both inorganic and organic) to improve crop yields, which is required to improve food security and economic development in Uganda. Ugandan extension services should therefore make efforts to intensify education among farmers in relation to soil fertility management options. In addition, farmers should collect and store the manure properly and preferably in a covered pit to enhance manure quality. Effective manure handling and storage systems should be designed that reduce loss of nutrients after excretion and during composting. Farmers should explore the viability of community based manure collection initiatives at the farm level where manure transportation costs are shared and hence minimized

    Socio-economic and agricultural potential of cattle manure application for crop production in Uganda

    Get PDF
    Declining soil fertility coupled with minimal nutrient inputs have contributed to low crop yields in sub-Saharan Africa; a major constraint to food security and economic development in Uganda. The use of cattle manure in agriculture is increasing as an alternative source of fertiliser and as a means of increasing or preserving soil organic matter. Research presented in this thesis was undertaken to: identify socio-economic issues affecting the use of cattle manure and inorganic fertiliser in Uganda; determine the crop response of Brassica spp to cattle manure as a source of N compared to inorganic N; and model the response of Brassica spp to applications of N from cattle manure and/or inorganic fertiliser for two major agroecological zones; dry land agriculture in Western Australia and tropical peri-urban agriculture in Uganda. The socio economic, agronomic and environmental viewpoints were considered. A survey conducted in Uganda as part of this study, highlighted that fifty-five percent (55%) of respondents reported that cattle manure was not adequate to fertilize the whole farm in a single cropping season due to the few animals kept on limited land of 0.2 ha- 0.8 ha or inadequate fodder as reported by 88% and 69%, respectively. A number of challenges associated with cattle manure use included weight and bulkiness of manure (75%), lack of labour (68%), high transportation and application costs (38%) and lack of storage facilities (33%) to maintain quality attributes of manure.The quality attributes of cattle manure for canola (Brassica napus) production were investigated further using manure stored for four months (M4) (1.31% N) and twelve months (M12) (0.32-1.18% N) compared with inorganic N (urea 46% N) on light textured sandy soil, using different rates following a systematic experimental design. Cattle manure was obtained from a cattle feedlot at Ucarty 120 km East of Perth, Western Australia and used in two field experiments whereas urea as a source of N was used in both field and glasshouse experiments. The cattle manure N was predominantly organic, and hence the inorganic fraction available for crop uptake at all times was extremely low.The growth response of canola (Brassica napus) to increasing rates of cattle manure and comparable rates of inorganic N as urea, to a maximum of 200 kg ha-1 was examined in the field for two growing seasons to determine a N response curve. Fresh and dry weight yields and N uptake in relation to organic N from cattle manure were statistically analysed by linear regression analysis and compared to respective yields from mineral N calibration plots. Linear models of the form y = a + bx were fitted to the data where y is the yield (kg ha-1 fresh or DM or N uptake).The percentage relative effectiveness (RE) was calculated for seasonal DM production and N uptake in canola during the 2009 and 2010 growing seasons. In the first year of canola, the RE for N uptake in cattle manure compared with top-dressed inorganic N ranged from 13% to 18% over the season and by harvest DM was 22%. In the second year, the RE for N uptake by canola in cattle manure averaged 28% for M4 and 21% for M12 over the growing season compared with top-dressed inorganic N, and by harvest, the RE of DM was 33% for M4 and 26% for M12. Urea was more effective as a source of N than comparable N loadings for either M4 or M12 as indicated by RE for fresh weight, DM and N uptake. Factors such as low mineralisation rate of N contributed to the lower effectiveness of cattle manure N under field conditions.The progressive increases in RE in stored cattle manure may be due to a number of factors including N in cattle manure becoming more available with time, the manure N being accessed more effectively by larger plant roots, increased soil moisture and or higher rates of N responding to lower levels of soil N. There was no evidence to suggest that lower soil N contributed to improvement in percentage RE during the season since soil tests were not conducted after the conclusion of the experiments.Dry cattle manure at 62 tonnes ha-1 of M12 and 44 tonnes ha-1of M4 would be required to achieve high potential yield. The calibrated computer model predicted the response of canola to N availability and quantified potential yield of canola under cattle manure and inorganic fertiliser application. The model was then adapted to high yield potential soils of Uganda and showed yield increases and returns from N additions on simulated potential yields of cabbage and other factors for crop growth to be constant. Maximum returns of A3,041,A3,041, A3,518 and A4,230ha−1wouldbeobtainedundermanureNapplicationratesof360,440and600kgNha−1atacostofA4,230 ha-1 would be obtained under manure N application rates of 360, 440 and 600 kg N ha-1 at a cost of A1,188, A1,452andA1,452 and A1,980, respectively. The cost of N would be A800,A800, A960 and A1,280ha−1underinorganicNatoptimallevelsatmaximumreturnsofA1,280 ha-1 under inorganic N at optimal levels at maximum returns of A3,970, A4,721andA4,721 and A5,837 ha-1 for low, medium and high potential yield, respectively.The growth response of Brassica species including two cabbage varieties and canola was examined in the glasshouse. There were no growth differences among the three Brassica spp grown in adequate N, indicating that the canola model may be a suitable proxy for modelling cabbage production when it comes to N application response.The model took into account rainfall, which in the first year season increased the maximum depth of the wetting front by about 46 cm resulting in N leaching further below the root zone as opposed to the second year.Final rooting depth was less with lower rainfall and increased rainfall significantly reduced nitrate in the rooting zone in the weeks in which the rainfall occured due to increased leaching.Based on the experiments conducted and the socio-economic survey, the research addressed the problem of soil fertility decline in sub-Saharan Africa, particularly in Uganda. It identified constraints to fertiliser use for crop production in peri-urban agriculture in Uganda, focusing on the use of cattle manure and/or inorganic N fertiliser. A bio-economic model developed predicted N fertiliser requirements to improve crop yields and economic returns for cabbage production. The thesis findings will contribute towards improved cattle manure utilisation in agriculture in sub-Saharan Africa. Although the research primarily investigated dry solid cattle manure applied to dryland agriculture in Western Australian soils, the results will be of relevance to any farming system involved in the land application of cattle manure, to increase food production and to make better use of N in crop production.Further studies are required in Uganda to determine and verify the key coefficients in the bio-economic model before it can be used to make recommendations. This should include other N sources including cow’s urine, poultry manure and goat manure

    The application of cattle manure to improve soil fertility for crop production in Uganda

    Get PDF
    Declining per capita food production and soil fertility depletion are threatening the livelihoods of many small-holder farmers in East Africa, including Uganda. High demand for food due to the increase in population has necessitated the need to improve crop yields where synthetically manufactured fertiliser use in the production system is often scarce and expensive. Cattle manure provides essential plant nutrients (mainly nitrogen, phosphorous and potassium) and is available locally; however, there is little information in Uganda on soil fertility status, the most effective rates of cattle manure, methods of application, crop requirements for specific nutrients and limiting factors to crop production. A survey was conducted on selected small-holder farmers in Uganda, in the central districts (Kampala and Wakiso) in January 2010 to identify socio-economic factors influencing the use of fertiliser and the current level of soil fertility as constraints that were most limiting to plant production. It was apparent from the survey and soil sampling that soil physicochemical values varied greatly amongst the soils and sites investigated. Unfortunately, in many situations the application of fertilisers being used didn’t target specific nutrients most limiting to crop production. The main findings from the soil survey will be presented in this paper and subsequent field research and nitrogen modelling that has been conducted to better assist farmers in Uganda improve crop productivity through more effective fertiliser practice

    Socio-economic potential of cattle manure application for crop production in Uganda: A case of Wakiso, Mukono and Kampala Districts.

    No full text
    A socio economic survey of small-holder farmers was carried out in the central districts of Wakiso, Mukono and Kampala, Uganda to assess the current situation of small-holder crop-livestock farms with respect to the requirements and options for nutrient applications, including cattle manure, with soil sampling conducted to identify nutrients most limiting to plant production. A total of 95% of the respondents were using cattle manure and 5% inorganic fertilisers. The major benefits obtained from cattle manure were increased yields (41%) and low cost (29%), while negative effects were poor hygienic conditions (25%) and bad odour (19%). The soil test results showed low levels of nitrogen (N); however, scientific research on N availability following application of cattle manure for crop production is lacking in Uganda. The relative effectiveness of N compared to inorganic fertiliser was determined from field and glasshouse experiments. A mechanistic dynamic model, select your nitrogen (SYN) that integrates this knowledge to predict crop N availability, N uptake, potential yield and economic returns, has been developed for possible adoption for Ugandan conditions to improve fertiliser/cattle manure use
    corecore