56 research outputs found

    Magnetic compass orientation in European robins is dependent on both wavelength and intensity of light

    Get PDF
    Magnetic compass orientation in birds has been shown to be light dependent. Results from behavioural studies indicate that magnetoreception capabilities are disrupted under light of peak wavelengths longer than 565 nm, and shifts in orientation have been observed at higher light intensities (43-44x1015 quanta s-1 m-2). To investigate further the function of the avian magnetic compass with respect to wavelength and intensity of light, we carried out orientation cage experiments with juvenile European robins, caught during their first autumn migration, exposed to light of 560.5 nm (green), 567.5 nm (green-yellow) and 617 nm (red) wavelengths at three different intensities (1 mW m-2, 5 mW m-2 and 10 mW m-2). We used monochromatic light of a narrow wavelength range (half bandwidth of 9-11 nm, compared with half bandwidths ranging between 30 nm and 70 nm used in other studies) and were thereby able to examine the magnetoreception mechanism in the expected transition zone between oriented and disoriented behaviour around 565 nm in more detail. We show (1) that European robins show seasonally appropriate migratory directions under 560.5 nm light, (2) that they are completely disoriented under 567.5 nm light under a broad range of intensities, (3) that they are able to orient under 617 nm light of lower intensities, although into a direction shifted relative to the expected migratory one, and (4) that magnetoreception is intensity dependent, leading to disorientation under higher intensities. Our results support the hypothesis that birds possess a light-dependent magnetoreception system based on magnetically sensitive, antagonistically interacting spectral mechanisms, with at least one high-sensitive short-wavelength mechanism and one low-sensitive long-wavelength mechanism

    Compass orientation and possible migration routes of passerine birds at high arctic latitudes

    Get PDF
    The use of celestial or geomagnetic orientation cues can lead migratory birds along different migration routes during the migratory journeys, e.g. great circle routes (approximate), geographic or magnetic loxodromes. Orientation cage experiments have indicated that migrating birds are capable of detecting magnetic compass information at high northern latitudes even at very steep angles of inclination. However, starting a migratory journey at high latitudes and following a constant magnetic course often leads towards the North Magnetic Pole, which means that the usefulness of magnetic compass orientation at high latitudes may be questioned. Here, we compare possible long-distance migration routes of three species of passerine migrants breeding at high northern latitudes. The initial directions were based on orientation cage experiments performed under clear skies and simulated overcast and from release experiments under natural overcast skies. For each species we simulated possible migration routes (geographic loxodrome, magnetic loxodrome and sun compass route) by extrapolating from the initial directions and assessing a fixed orientation according to different compass mechanisms in order to investigate what orientation cues the birds most likely use when migrating southward in autumn. Our calculations show that none of the compass mechanisms (assuming fixed orientation) can explain the migration routes followed by night-migrating birds from their high Nearctic breeding areas to the wintering sites further south. This demonstrates that orientation along the migratory routes of arctic birds (and possibly other birds as well) must be a complex process, involving different orientation mechanisms as well as changing compass courses. We propose that birds use a combination of several compass mechanisms during a migratory journey with each of them being of a greater or smaller importance in different parts of the journey, depending on environmental conditions. We discuss reasons why birds developed the capability to use magnetic compass information at high northern latitudes even though following these magnetic courses for any longer distance will lead them along totally wrong routes. Frequent changes and recalibrations of the magnetic compass direction during the migratory journey are suggested as a possible solution

    Magnetic orientation in migratory birds

    No full text
    My thesis focuses on magnetic orientation in migratory birds, i.e. how they can perceive information from the Earth’s magnetic field and use it for orientation. To examine magnetoreception and the function of the light-dependent magnetic compass in birds, I performed behavioural orientation experiments with European robins, Erithacus rubecula, under different spectra and intensities of light. The birds were well-oriented under low-intensity 560.5 nm green light, but completely disoriented under 567.5 nm green-yellow light. Under low-intensity red light (617.0 nm) the birds shifted their preferred direction. This indicates that birds might possess at least two antagonistically interacting, magnetically sensitive spectral mechanisms, a short-wavelength mechanism in the blue-green and a long-wavelength mechanism in the red part of the spectrum. Five papers in this thesis are based on experiments carried out during an expedition to northern Canada. By displacing juvenile and adult birds across the Canadian tundra to areas beyond their normal experience and repeatedly testing their orientation we could (1) study the orientation and navigation abilities of inexperienced and experienced birds, (2) test the sensitivity of the magnetic compass at steep angles of inclination and (3) examine the use of magnetic and celestial compasses at geographic latitudes where the properties of the geomagnetic field change rapidly across longitudes and where the midnight sun makes star compass orientation impossible. White-crowned sparrows, Zonotrichia leucophrys, and Savannah sparrows, Passerculus sandwichensis, oriented towards the seasonally expected migratory directions with access to magnetic compass cues only. White-crowned sparrows could select a magnetic compass course in magnetic fields with an inclination deviating by only 1.4° from the vertical, but were disoriented at the magnetic North Pole. The change in orientation shown by both juvenile and adult white-crowned sparrows as a reaction to changing declination along the eastward displacement shows that these birds were aware of their position relative to home. In cue-conflict experiments, the birds shifted their preferred direction according to an artificial deflection of the magnetic field and recalibrated their celestial compasses, thus prioritized magnetic compass information in favour of celestial cues. By extrapolating potential migration routes from the empirical data collected during the expedition we could on a theoretical basis study the feasibility of using different compasses to reach the expected goals. Finally, I investigated the interrelationship and calibration between magnetic and celestial compass cues in a review of the existing literature and described how the different compasses might interact

    Bird migration : Clock and compass facilitate hemisphere switching

    Get PDF
    After cross-equatorial wintering, migratory birds reliably return to their natal grounds, but a population of cliff swallows recently switched breeding hemisphere. They inverted their annual cycle and migration directions almost instantaneously

    Clock-shift experiments with Savannah sparrows, Passerculus sandwichensis, at high northern latitudes

    No full text
    Orientation can be difficult for nocturnal bird migrants at high northern latitudes because of the large changes of magnetic declinations, rapid longitudinal time-shifts experienced during a long-distance flight and the invisibility of stars during the polar summer. Both sunset cues as well as geomagnetic cues have been shown to be of great importance in the orientation system of Savannah sparrows, Passerculus sandwichensis. We used clock-shift experiments to investigate whether geomagnetic and sunset cues were used for migratory orientation by wild-caught young Savannah sparrows at high geomagnetic latitudes in Northern Canada. We exposed birds to a 4-h slow clock-shift. expecting a 60degrees clock-wise shift in orientation after the treatment. Under natural clear skies in the local geomagnetic field, the birds responded by showing a significant axial mean orientation directed towards the position of the setting sun in the NW and towards their preferred migratory direction in the SE. After exposure to the clock-shift for 6 days and nights the birds showed a clear response to the treatment and shifted significantly towards NNE. Birds that first oriented towards NW in the experiments before clock-shift tended to shift clock-wise, thus reacted to the clock-shift in the expected way. The reaction of the individual birds that originally oriented towards SE seems to vary. In summary, our birds did not select a constant angle (menotaxis) in relation to the sun's position during the experiments, but presumably were affected by the sun showing phototaxis or followed their magnetic compass. Possible explanations of the unexpected experimental results are discussed

    A New View on an Old Debate: Type of Cue-Conflict Manipulation and Availability of Stars Can Explain the Discrepancies between Cue-Calibration Experiments with Migratory Songbirds.

    Get PDF
    Migratory birds use multiple compass systems for orientation, including a magnetic, star and sun/polarized light compass. To keep these compasses in register, birds have to regularly update them with respect to a common reference. However, cue-conflict studies have revealed contradictory results on the compass hierarchy, favoring either celestial or magnetic compass cues as the primary calibration reference. Both the geomagnetic field and polarized light cues present at sunrise and sunset have been shown to play a role in compass cue integration, and evidence suggests that polarized light cues at sunrise and sunset may provide the primary calibration reference for the other compass systems. We tested whether migratory garden warblers recalibrated their compasses when they were exposed to the natural celestial cues at sunset in a shifted magnetic field, which are conditions that have been shown to be necessary for the use of a compass reference based on polarized light cues. We released the birds on the same evening under a starry sky and followed them by radio tracking. We found no evidence of compass recalibration, even though the birds had a full view of polarized light cues near the horizon at sunset during the cue-conflict exposure. Based on a meta-analysis of the available literature, we propose an extended unifying theory on compass cue hierarchy used by migratory birds to calibrate the different compasses. According to this scheme, birds recalibrate their magnetic compass by sunrise/sunset polarized light cues, provided they have access to the vertically aligned band of maximum polarization near the horizon and a view of landmarks. Once the stars appear in the sky, the birds then recalibrate the star compass with respect of the recalibrated magnetic compass. If sunrise and sunset information can be viewed from the same location, the birds average the information to get a true geographic reference. If polarized light information is not available near the horizon at sunrise or sunset, the birds temporarily transfer the previously calibrated magnetic compass information to the available celestial compasses. We conclude that the type of cue-conflict manipulation and the availability of stars can explain the discrepancies between studies

    Cryptochrome expression in avian UV cones: revisiting the role of CRY1 as magnetoreceptor

    No full text
    Abstract Cryptochromes (CRY) have been proposed as putative magnetoreceptors in vertebrates. Localisation of CRY1 in the UV cones in the retinas of birds suggested that it could be the candidate magnetoreceptor. However, recent findings argue against this possibility. CRY1 is a type II cryptochrome, a subtype of cryptochromes that may not be inherently photosensitive, and it exhibits a clear circadian expression in the retinas of birds. Here, we reassessed the localisation and distribution of CRY1 in the retina of the zebra finch. Zebra finches have a light-dependent magnetic compass based on a radical-pair mechanism, similar to migratory birds. We found that CRY1 colocalised with the UV/V opsin (SWS1) in the outer segments of UV cones, but restricted to the tip of the segments. CRY1 was found in all UV cones across the entire retina, with the highest densities near the fovea. Pre-exposure of birds to different wavelengths of light did not result in any difference in CRY1 detection, suggesting that CRY1 did not undergo any detectable functional changes as result of light activation. Considering that CRY1 is likely not involved in magnetoreception, our findings open the possibility for an involvement in different, yet undetermined functions in the avian UV/V cones

    Fuel reserves affect migratory orientation of thrushes and sparrows both before and after crossing an ecological barrier near their breeding grounds

    No full text
    Fat reserves influence the orientation of migrating songbirds at ecological barriers, such as expansive water crossings. Upon encountering a body of water, fat migrants usually cross the barrier exhibiting 'forward' migration in a seasonally appropriate direction. In contrast, lean birds often exhibit temporary 'reverse' orientation away from the water, possibly to lead them to suitable habitats for refueling. Most examples of reverse orientation are restricted to autumn migration and, in North America, are largely limited to transcontinental migrants prior to crossing the Gulf of Mexico. Little is known about the orientation of lean birds after crossing an ecological barrier or on the way to their breeding grounds. We examined the effect of fat stores on migratory orientation of both long- and short-distance migrants before and after a water crossing near their breeding grounds; Catharus thrushes (Swainson's and gray-cheeked thrushes, C. ustulatus and C. minimus) and white-throated sparrows Zonotrichia albicollis were tested for orientation at the south shore of Lake Ontario during spring and autumn. During both spring and autumn, fat birds oriented in a seasonally appropriate, forward direction. Lean thrushes showed a tendency for reverse orientation upon encountering water in the spring and axial, shoreline orientation after crossing water in the autumn. Lean sparrows were not consistently oriented in any direction during either season. The responses of lean birds may be attributable to their stopover ecology and seasonally-dependent habitat quality

    Zebra finches have a light-dependent magnetic compass similar to migratory birds

    No full text
    Birds have a light-dependent magnetic compass that provides information about the spatial alignment of the geomagnetic field. It is proposed to be located in the avian retina and mediated by a lightinduced, radical-pair mechanism involving cryptochromes as sensory receptor molecules. To investigate how the behavioural responses of birds under different light spectra match with cryptochromes as the primary magnetoreceptor, we examined the spectral properties of the magnetic compass in zebra finches. We trained birds to relocate a food reward in a spatial orientation task using magnetic compass cues. The birds were well oriented along the trained magnetic compass axis when trained and tested under low-irradiance 521 nm green light. In the presence of a 1.4 MHz radio-frequency electromagnetic (RF)-field, the birds were disoriented, which supports the involvement of radical-pair reactions in the primary magnetoreception process. Birds trained and tested under 638 nm red light showed a weak tendency to orient ~45 deg clockwise of the trained magnetic direction. Under low-irradiance 460 nm blue light, they tended to orient along the trained magnetic compass axis, but were disoriented under higher irradiance light. Zebra finches trained and tested under high-irradiance 430 nm indigo light were well oriented along the trained magnetic compass axis, but disoriented in the presence of a RF-field. We conclude that magnetic compass responses of zebra finches are similar to those observed in nocturnally migrating birds and agree with cryptochromes as the primary magnetoreceptor, suggesting that light-dependent, radicalpair- mediated magnetoreception is a common property for all birds, including non-migratory species
    • …
    corecore