27 research outputs found

    Entropy generation in magnetohydrodynamic mixed convection flow over an inclined stretching sheet

    Get PDF
    This research focuses on entropy generation rate per unit volume in magneto-hydrodynamic (MHD) mixed convection boundary layer flow of a viscous fluid over an inclined stretching sheet. Analysis has been performed in the presence of viscous dissipation and non-isothermal boundary conditions. The governing boundary layer equations are transformed into ordinary differential equations by an appropriate similarity transformation. The transformed coupled nonlinear ordinary differential equations are then solved numerically by a shooting technique along with the Runge-Kutta method. Expressions for entropy generation (Ns) and Bejan number (Be) in the form of dimensionless variables are also obtained. Impact of various physical parameters on the quantities of interest is seen

    Second Law Analysis of Dissipative Flow over a Riga Plate with Non-Linear Rosseland Thermal Radiation and Variable Transport Properties

    No full text
    In this article, we investigated entropy generation and heat transfer analysis in a viscous flow induced by a horizontally moving Riga plate in the presence of strong suction. The viscosity and thermal conductivity of the fluid are taken to be temperature dependent. The frictional heating function and non-linear radiation terms are also incorporated in the entropy generation and energy equation. The partial differential equations which model the flow are converted into dimensionless form by using proper transformations. Further, the dimensionless equations are reduced by imposing the conditions of strong suction. Numerical solutions are obtained using MATLAB boundary value solver bvp4c and used to evaluate the entropy generation number. The influences of physical flow parameters arise in the mathematical modeling are demonstrated through various graphs. The analysis reveals that velocity decays whereas entropy generation increases with rising values of variable viscosity parameter. Furthermore, entropy generation decays with increasing variable thermal conductivity parameter

    Second Law Analysis of Dissipative Nanofluid Flow over a Curved Surface in the Presence of Lorentz Force: Utilization of the Chebyshev–Gauss–Lobatto Spectral Method

    No full text
    The primary objective of the present work is to study the effects of heat transfer and entropy production in a nanofluid flow over a curved surface. The influences of Lorentz force and magnetic heating caused by the applied uniform magnetic field and energy dissipation by virtue of frictional heating are considered in the problem formulation. The effects of variable thermal conductivity are also encountered in the present model. The dimensional governing equations are reduced to dimensionless form by introducing the similarity transformations. The dimensionless equations are solved numerically by using the Chebyshev⁻Gauss⁻Lobatto spectral method (CGLSM). The rate of increase/increase in the local Nusselt number and skin friction coefficient are estimated by using a linear regression model. The expression for dimensionless entropy production is computed by employing the solutions obtained from dimensionless momentum and energy equations. Various graphs are plotted in order to examine the effects of physical flow parameters on velocity, temperature, and entropy production. The increase in skin friction coefficient with magnetic parameter is high for nanofluid containing copper nanoparticles as compared to silver nanoparticles. The analysis reveals that velocity, temperature, and entropy generation decrease with the rising value of dimensionless radius of curvature. Comparative analysis also reveals that the entropy generation during the flow of nanofluid containing copper nanoparticles is greater than that of containing silver nanoparticles

    Finite Difference Simulation of Nonlinear Convection in Magnetohydrodynamic Flow in the Presence of Viscous and Joule Dissipation over an Oscillating Plate

    No full text
    Engineers and researchers are interested in the study of nonlinear convection, viscous dissipation, and Joule heating in various flow configurations due to their various applications in engineering processes. That is why the present study deals with the influence of nonlinear convection, viscous, and Joule dissipation of the temperature and velocity profile of incompressible fluid over a flat plate. In this study, the magnetic field acts perpendicular to the fluid flow and is supposed to be of uniform magnitude. Further, the Newtonian fluid, which is electrically conducting, passes over an infinite vertical flat plate under an oscillatory motion. The term representing the influence of the nonlinear convection phenomenon is integrated into the Navier–Stokes equation. The governing equations of the mentioned study were modeled in the form of non-linear PDEs and modified as non-dimensional equations via appropriate scaling analyses, which resulted in coupled and non-linear PDEs. For the numerical solution of the transformed non-linear PDEs, the finite difference method was applied. Finally, we present the effects of various flow parameters via graphical illustrations

    Finite Difference Simulation of Nonlinear Convection in Magnetohydrodynamic Flow in the Presence of Viscous and Joule Dissipation over an Oscillating Plate

    No full text
    Engineers and researchers are interested in the study of nonlinear convection, viscous dissipation, and Joule heating in various flow configurations due to their various applications in engineering processes. That is why the present study deals with the influence of nonlinear convection, viscous, and Joule dissipation of the temperature and velocity profile of incompressible fluid over a flat plate. In this study, the magnetic field acts perpendicular to the fluid flow and is supposed to be of uniform magnitude. Further, the Newtonian fluid, which is electrically conducting, passes over an infinite vertical flat plate under an oscillatory motion. The term representing the influence of the nonlinear convection phenomenon is integrated into the Navier–Stokes equation. The governing equations of the mentioned study were modeled in the form of non-linear PDEs and modified as non-dimensional equations via appropriate scaling analyses, which resulted in coupled and non-linear PDEs. For the numerical solution of the transformed non-linear PDEs, the finite difference method was applied. Finally, we present the effects of various flow parameters via graphical illustrations

    Entropy Generation in Cu-Al2O3-H2O Hybrid Nanofluid Flow over a Curved Surface with Thermal Dissipation

    No full text
    Heat transfer and entropy generation in a hybrid nanoliquid flow caused by an elastic curved surface is investigated in the present article. To examine the effects of frictional heating on entropy generation, the energy dissipation function is included in the energy equation. The Tiwari and Dass model for nanofluid is used by taking water as a base fluid. A new class of nanofluid (hybrid nanofluid) with two kinds of nanoparticles, Copper (Cu) and Aluminum oxide (Al2O3), is considered. Curvilinear coordinates are used in the mathematical formulation due to the curved nature of the solid boundary. By utilizing similarity transformations, the modelled partial differential equations are converted into ordinary differential equations. Shooting and the Runge-Kutta-Fehlberg method (FRKM) have been used to solve the transformed set of non-linear differential equations. The expression for entropy generation is derived in curvilinear coordinates and computed by using the numerical results obtained from dimensionless momentum and energy equations. Comparisons of our numerical results and those published in the previous literature demonstrate excellent agreements, validating our numerical simulation. In addition, we have also conducted parametric studies and find that entropy generation and temperature suppress with increasing values of dimensionless radius of curvature. Furthermore, it is found that less entropy is generated in regular nanofluid as compare to hybrid nanofluid. To examine the influences of a set of embedding physical parameters on quantities of interest, different graphs are plotted and discussed

    Transpiration and Viscous Dissipation Effects on Entropy Generation in Hybrid Nanofluid Flow over a Nonlinear Radially Stretching Disk

    No full text
    The present research work explores the effects of suction/injection and viscous dissipation on entropy generation in the boundary layer flow of a hybrid nanofluid (Cu–Al2O3–H2O) over a nonlinear radially stretching porous disk. The energy dissipation function is added in the energy equation in order to incorporate the effects of viscous dissipation. The Tiwari and Das model is used in this work. The flow, heat transfer, and entropy generation analysis have been performed using a modified form of the Maxwell Garnett (MG) and Brinkman nanofluid model for effective thermal conductivity and dynamic viscosity, respectively. Suitable transformations are utilized to obtain a set of self-similar ordinary differential equations. Numerical solutions are obtained using shooting and bvp4c Matlab solver. The comparison of solutions shows excellent agreement. To examine the effects of principal flow parameters like suction/injection, the Eckert number, and solid volume fraction, different graphs are plotted and discussed. It is concluded that entropy generation inside the boundary layer of a hybrid nanofluid is high compared to a convectional nanofluid
    corecore