6 research outputs found

    One-Step Solvothermal Synthesis by Ethylene Glycol to Produce N-rGO for Supercapacitor Applications

    No full text
    Graphene and its derivatives have emerged as peerless electrode materials for energy storage applications due to their exclusive electroactive properties such as high chemical stability, wettability, high electrical conductivity, and high specific surface area. However, electrodes from graphene-based composites are still facing some substantial challenges to meet current energy demands. Here, we applied one-pot facile solvothermal synthesis to produce nitrogen-doped reduced graphene oxide (N-rGO) nanoparticles using an organic solvent, ethylene glycol (EG), and introduced its application in supercapacitors. Electrochemical analysis was conducted to assess the performance using a multi-channel electrochemical workstation. The N-rGO-based electrode demonstrates the highest specific capacitance of 420 F g−1 at 1 A g−1 current density in 3 M KOH electrolyte with the value of energy (28.60 Whkg−1) and power (460 Wkg−1) densities. Furthermore, a high capacitance retention of 98.5% after 3000 charge/discharge cycles was recorded at 10 A g−1. This one-pot facile solvothermal synthetic process is expected to be an efficient technique to design electrodes rationally for next-generation supercapacitors

    One-Step Solvothermal Synthesis by Ethylene Glycol to Produce N-rGO for Supercapacitor Applications

    No full text
    Graphene and its derivatives have emerged as peerless electrode materials for energy storage applications due to their exclusive electroactive properties such as high chemical stability, wettability, high electrical conductivity, and high specific surface area. However, electrodes from graphene-based composites are still facing some substantial challenges to meet current energy demands. Here, we applied one-pot facile solvothermal synthesis to produce nitrogen-doped reduced graphene oxide (N-rGO) nanoparticles using an organic solvent, ethylene glycol (EG), and introduced its application in supercapacitors. Electrochemical analysis was conducted to assess the performance using a multi-channel electrochemical workstation. The N-rGO-based electrode demonstrates the highest specific capacitance of 420 F g−1 at 1 A g−1 current density in 3 M KOH electrolyte with the value of energy (28.60 Whkg−1) and power (460 Wkg−1) densities. Furthermore, a high capacitance retention of 98.5% after 3000 charge/discharge cycles was recorded at 10 A g−1. This one-pot facile solvothermal synthetic process is expected to be an efficient technique to design electrodes rationally for next-generation supercapacitors

    Insight into the Effect of Glycerol on Dielectric Relaxation and Transport Properties of Potassium-Ion-Conducting Solid Biopolymer Electrolytes for Application in Solid-State Electrochemical Double-Layer Capacitor

    No full text
    The increased interest in the transition from liquid to solid polymer electrolytes (SPEs) has driven enormous research in the area polymer electrolyte technology. Solid biopolymer electrolytes (SBEs) are a special class of SPEs that are obtained from natural polymers. Recently, SBEs have been generating much attention because they are simple, inexpensive, and environmentally friendly. In this work, SBEs based on glycerol-plasticized methylcellulose/pectin/potassium phosphate (MC/PC/K3PO4) are investigated for their potential application in an electrochemical double-layer capacitor (EDLC). The structural, electrical, thermal, dielectric, and energy moduli of the SBEs were analyzed via X-ray diffractometry (XRD), Fourier transforms infrared spectroscopy (FTIR), electrochemical impedance spectroscopy (EIS), transference number measurement (TNM), and linear sweep voltammetry (LSV). The plasticizing effect of glycerol in the MC/PC/K3PO4/glycerol system was confirmed by the change in the intensity of the samples’ FTIR absorption bands. The broadening of the XRD peaks demonstrates that the amorphous component of SBEs increases with increasing glycerol concentration, while EIS plots demonstrate an increase in ionic conductivity with increasing plasticizer content owing to the formation of charge-transfer complexes and the expansion of amorphous domains in polymer electrolytes (PEs). The sample containing 50% glycerol has a maximal ionic conductivity of about 7.5 × 10−4 scm−1, a broad potential window of 3.99 V, and a cation transference number of 0.959 at room temperature. Using the cyclic voltammetry (CV) test, the EDLC constructed from the sample with the highest conductivity revealed a capacitive characteristic. At 5 mVs−1, a leaf-shaped profile with a specific capacitance of 57.14 Fg−1 was measured based on the CV data

    Optimization of the Electrochemical Performance of a Composite Polymer Electrolyte Based on PVA-K2CO3-SiO2 Composite

    No full text
    Composite polymer electrolyte (CPE) based on polyvinyl alcohol (PVA) polymer, potassium carbonate (K2CO3) salt, and silica (SiO2) filler was investigated and optimized in this study for improved ionic conductivity and potential window for use in electrochemical devices. Various quantities of SiO2 in wt.% were incorporated into PVA-K2CO3 complex to prepare the CPEs. To study the effect of SiO2 on PVA-K2CO3 composites, the developed electrolytes were characterized for their chemical structure (FTIR), morphology (FESEM), thermal stabilities (TGA), glass transition temperature (differential scanning calorimetry (DSC)), ionic conductivity using electrochemical impedance spectroscopy (EIS), and potential window using linear sweep voltammetry (LSV). Physicochemical characterization results based on thermal and structural analysis indicated that the addition of SiO2 enhanced the amorphous region of the PVA-K2CO3 composites which enhanced the dissociation of the K2CO3 salt into K+ and CO32− and thus resulting in an increase of the ionic conduction of the electrolyte. An optimum ionic conductivity of 3.25 × 10−4 and 7.86 × 10−3 mScm−1 at ambient temperature and at 373.15 K, respectively, at a potential window of 3.35 V was observed at a composition of 15 wt.% SiO2. From FESEM micrographs, the white granules and aggregate seen on the surface of the samples confirm that SiO2 particles have been successfully dispersed into the PVA-K2CO3 matrix. The observed ionic conductivity increased linearly with increase in temperature confirming the electrolyte as temperature-dependent. Based on the observed performance, it can be concluded that the CPEs based on PVA-K2CO3-SiO2 composites could serve as promising candidate for portable and flexible next generation energy storage devices

    Substantial Proton Ion Conduction in Methylcellulose/Pectin/Ammonium Chloride Based Solid Nanocomposite Polymer Electrolytes: Effect of ZnO Nanofiller

    No full text
    In this research, nanocomposite solid polymer electrolytes (NCSPEs) comprising methylcellulose/pectin (MC/PC) blend as host polymer, ammonium chloride (NH4Cl) as an ion source, and zinc oxide nanoparticles (ZnO NPs) as nanofillers were synthesized via a solution cast methodology. Techniques such as Fourier transform infrared (FTIR), electrical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV) were employed to characterize the electrolyte. FTIR confirmed that the polymers, NH4Cl salt, and ZnO nanofiller interact with one another appreciably. EIS demonstrated the feasibility of achieving a conductivity of 3.13 × 10−4 Scm−1 for the optimum electrolyte at room temperature. Using the dielectric formalism technique, the dielectric properties, energy modulus, and relaxation time of NH4Cl in MC/PC/NH4Cl and MC/PC/NH4Cl/ZnO systems were determined. The contribution of chain dynamics and ion mobility was acknowledged by the presence of a peak in the imaginary portion of the modulus study. The LSV measurement yielded 4.55 V for the comparatively highest conductivity NCSPE

    Innovative Methylcellulose-Polyvinyl Pyrrolidone-Based Solid Polymer Electrolytes Impregnated with Potassium Salt: Ion Conduction and Thermal Properties

    No full text
    In this research, innovative green and sustainable solid polymer electrolytes (SPEs) based on plasticized methylcellulose/polyvinyl pyrrolidone/potassium carbonate (MC/PVP/K2CO3) were examined. The MC/PVP/K2CO3 SPE system with five distinct ethylene carbonate (EC) concentrations as a plasticizer was successfully designed. Frequency-dependent conductivity plots were used to investigate the conduction mechanism of the SPEs. Electrochemical potential window stability and the cation transfer number of the SPEs were studied via linear sweep voltammetry (LSV) and transference number measurement (TNM), respectively. Additionally, the structural behavior of the SPEs was analyzed using Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), X-ray diffractometry (XRD), and differential scanning calorimetry (DSC) techniques. The SPE film complexed with 15 wt.% EC measured a maximum conductivity of 3.88 × 10−4 Scm−1. According to the results of the transference number examination, cations that record a transference number of 0.949 are the primary charge carriers. An EDLC was fabricated based on the highest conducting sample that recorded a specific capacitance of 54.936 Fg−1 at 5 mVs−1
    corecore