2 research outputs found

    Vitamin D and intestinal homeostasis: Barrier, microbiota, and immune modulation

    Get PDF
    © 2020 Elsevier Ltd Vitamin D plays a pivotal role in intestinal homeostasis. Vitamin D can impact the function of virtually every cell in the gut by binding to its intracellular receptor (VDR) and subsequently transcribing relevant genes. In the lumen, the mucus layer and the underlying epithelium serve to keep resident microbiota at bay. Vitamin D ensures an appropriate level of antimicrobial peptides in the mucus and maintains epithelial integrity by reinforcing intercellular junctions. Should bacteria penetrate the epithelial layer and enter the interstitium, immune sentinel cells (e.g. macrophages, dendritic cells, and innate lymphoid cells) elicit inflammation and trigger the adaptive immune response by activating Th1/Th17 cells. Vitamin D/VDR signaling in these cells ensures clearance of the bacteria. Subsequently, vitamin D also quiets the adaptive immune system by suppressing the Th1/Th17 cells and favoring Treg cells. The importance of vitamin D/VDR signaling in intestinal homeostasis is evidenced by the development of a chronic inflammatory state (e.g. IBD) when this signaling system is disrupted

    Gene Expression Profiling of Peripheral Blood Mononuclear Cells in Type 2 Diabetes: An Exploratory Study

    No full text
    Background and Objectives: Visceral obesity is associated with chronic low-grade inflammation that predisposes to metabolic syndrome. Indeed, infiltration of adipose tissue with immune–inflammatory cells, including ‘classical’ inflammatory M1 and anti-inflammatory ‘alternative’ M2 macrophages, causes the release of a variety of bioactive molecules, resulting in the metabolic complications of obesity. This study examined the relative expression of macrophage phenotypic surface markers, cholesterol efflux proteins, scavenger receptors, and adenosine receptors in human circulating peripheral blood mononuclear cells (PBMCs), isolated from patients with type 2 diabetes mellitus (T2DM), with the aim to phenotypically characterize and identify biomarkers for these ill-defined cells. Materials and Methodology: PBMCs were isolated from four groups of adults: Normal-weight non-diabetic, obese non-diabetic, newly diagnosed with T2DM, and T2DM on metformin. The mRNA expression levels of macrophage phenotypic surface markers (interleukin-12 (IL-12), C-X-C motif chemokine ligand 10 (CXCL10), C-C motif chemokine ligand 17 (CCL17), and C-C motif receptor 7 (CCR7)), cholesterol efflux proteins (ATP-binding cassette transporter-1 (ABCA1), ATP binding cassette subfamily G member 1 (ABCG1), and sterol 27-hydroxylase (CYP27A)), scavenger receptors (scavenger receptor-A (SR-A), C-X-C motif ligand 16 (CXCL16), and lectin-like oxidized LDL receptor-1 (LOX-1)), and adenosine receptors (adenosine A2A receptor (A2AR) and adenosine A3 receptor (A3R)) were measured using qRT-PCR. Results: In PBMCs from T2DM patients, the expression of IL-12, CCR7, ABCA1, and SR-A1 was increased, whereas the expression of CXCL10, CCL17, ABCG1,27-hydroxylase, LOX-1, A2AR and A3R was decreased. On the other hand, treatment with the antidiabetic drug, metformin, reduced the expression of IL-12 and increased the expression of 27-hydroxylase, LOX-1, CXCL16 and A2AR. Conclusions: PBMCs in the circulation of patients with T2DM express phenotypic markers that are different from those typically present in adipose tissue M1 and M2 macrophages and could be representative of metabolically activated macrophages (MMe)-like cells. Our findings suggest that metformin alters phenotypic markers of MMe-like cells in circulation
    corecore