2 research outputs found

    Effects of Fogging System and Nitric Oxide on Growth and Yield of ‘Naomi’ Mango Trees Exposed to Frost Stress

    No full text
    In years with unfavorable weather, winter frost during the blossoming season can play a significant role in reducing fruit yield and impacting the profitability of cultivation. The mango Naomi cultivar Mangifera indica L. has a low canopy that is severely affected by the effects of frost stress. As a result of the canopy being exposed to physiological problems, vegetative development is significantly inhibited. The current investigation aimed to study the influence of spraying nitric oxide and fogging spray systems on Naomi mango trees grafted on ‘Succary’ rootstock under frost stress conditions. The treatments were as follows: nitric oxide (NO) 50 and 100 μM, fogging spray system, and control. In comparison to the control, the use of nitric oxide and a fogging system significantly improved the leaf area, photosynthesis pigments of the leaf, the membrane stability index, yield, and physical and chemical characteristics of the Naomi mango cultivar. For instance, the application of 50 μM NO, 100 μM NO, and the fogging spray system resulted in an increase in yield by 41.32, 106.12, and 121.43% during the 2020 season, and by 39.37, 101.30, and 124.68% during the 2021 season compared to the control, respectively. The fogging spray system and highest level of NO decreased electrolyte leakage, proline content, total phenolic content, catalase (CAT), peroxidases (POX), and polyphenol oxidase (PPO) enzyme activities in leaves. Furthermore, the number of damaged leaves per shoot was significantly reduced after the application of fogging spray systems and nitric oxide in comparison to the control. Regarding vegetative growth, our results indicated that the fogging spray system and spraying nitric oxide at 100 μM enhanced the leaf surface area compared to the control and other treatments. A similar trend was noticed regarding yield and fruit quality, whereas the best values were obtained when the fogging spray system using nitric oxide was sprayed at a concentration of 100 μM. The application of fogging spray systems and nitric oxide can improve the production and fruit quality of Naomi mango trees by reducing the effects of adverse frost stress conditions

    Evaluating the Potential Anticancer Properties of <i>Salvia triloba</i> in Human-Osteosarcoma U2OS Cell Line and Ovarian Adenocarcinoma SKOV3 Cell Line

    No full text
    Salvia triloba (S. triloba) is an herb inherently linked to traditional medicine systems in the Eastern Mediterranean region. There is minimal experimental evidence however, regarding the anticancer effects of S. triloba in both osteosarcoma and ovarian cancer. In this study, we investigated the effects of crude (macerated) S. triloba ethanol and acetone leaf extracts on viability, migratory ability, and the expression of genes regulating these activities in U2OS and SKOV3 cells using MTT assay, scratch-wound healing/trans-well migration assay, and RT-qPCR respectively. MTT assay results indicated that the acetone extract significantly reduced both U2OS and SKOV3 cell viability with half-maximal inhibitory concentrations (IC50) of 54.51 ± 1.10 µg/mL and 75.96 ± 1.0237 µg/mL respectively; these concentrations further displayed negligible hemolytic activity. The combination of acetone extract (19 µg/mL) and paclitaxel (0.787 µg/mL) displayed synergy and reduced SKOV3 cell viability by over 90%. Additionally, the trans-well migration assay illustrated that the acetone extract (IC50) inhibited both U2OS and SKOV3 cell migration by more than 50%. Moreover, S. triloba acetone extract significantly downregulated the steady-state mRNA expression of key genes involved in driving select cancer hallmarks. Four fractions were generated from the acetone extract by thin layer chromatography (TLC), and the obtained retention factors (Rf) (ranging from 0.2 to 0.8) suggested a mixture of high and moderately polar compounds whose bioactivities require further investigation. In addition, FTIR measurements of the extract revealed peaks corresponding to OH, aliphatic CH, and ester groups suggesting the presence of phenolic compounds, terpenes, and polysaccharides. Altogether, these results suggest that S. triloba possesses potential therapeutic compounds that inhibit cell proliferation and migration, and modulate several genes involved in osteosarcoma and ovarian carcinoma progression
    corecore