7 research outputs found

    Surface modification for osseointegration of Ti6Al4V ELI using powder mixed sinking EDM

    Get PDF
    Biomedical implant rejection due to micromotion and inflammation around an implant leads to osteolysis and eventually has an implant failure because of poor osseointegration. To enhance osseointegration, the implant surface modification both at the nano and micro-scale levels is preferred to result in an enhanced interface between the body tissue and implant. The present study focuses on the modification of the surface of Titanium (α+β) ELI medical grade alloy using powder-mixed electric discharge machining (PMEDM). Pulse current, on/off time, and various silicon carbide (SiC) powder concentrations are used as input parameters to comprehend desired surface modifications. Powder concentration is considered as the most important factor to control surface roughness and recast layer depth. A significant decrease in surface fracture density and roughness is observed using a 20 g/l concentration of SiC particles. Elemental mapping analysis has confirmed the migration of Si and the generation of promising surface texture and chemistry. Oxides and carbides enriched surface improved the microhardness of the re-solidified layer from 320 HV to 727 HV. Surface topology reveals nano-porosity (50–200 nm) which enhances osseointegration due to the absorption of proteins especially collagen to the surface

    Helical Milling of CFRP/Ti6Al4V Stacks Using Nano Fluid Based Minimum Quantity Lubrication (NF-MQL): Investigations on Process Performance and Hole Integrity

    No full text
    The structural components in the aeronautical industry require CFRP/Ti6Al4V stacks to be processed together, which results in poor hole integrity due to the thermal properties of the materials and challenges related to processability. These challenges include quality variation of the machined holes because of the limitations in process properties. Therefore, a novel solution through helical milling is investigated in the study using nano fluid based minimum quantity lubrication (NF-MQL). The analysis of variance shows, for Ti6Al4V, eccentricity (PCR = 28.56%), spindle speed (Ti) (PCR = 42.84%), and tangential feed (PCR = 8.61%), and for CFRP, tangential feed (PCR = 40.16%), spindle speed (PCR = 28.75%), and eccentricity (PCR = 8.41%) are the most significant parameters for diametric error. Further on, the rise in the circularity error is observed because of prolonged tool engagement at a higher value of tangential feed. Moreover, the surface roughness of Ti was reduced with an increasing percentage of MoS2 in the lubricant. The spindle speed (37.37%) and lubricant (45.76%) have a potential influence on the processing temperature, as evident in the analysis of variance. Similarly, spindle speed Ti (61.16%), tangential feed (23.37%), and lubrication (11.32%) controlled flank wear, which is critical to tool life. Moreover, the concentration of MoS2 decreased edge wear from ~105 µm (0.5% concentration) to ~70 µm (1% concentration). Thorough analyses on process performance in terms of hole accuracy, surface roughness, processing temperature, and tool wear are carried out based on the physical science of the process for cleaner production. The NF-MQL has significantly improved process performance and hole integrity

    On the Investigation of Surface Integrity of Ti6Al4V ELI Using Si-Mixed Electric Discharge Machining

    No full text
    Surface modification is given vital importance in the biomedical industry to cope with surface tissue growth problems. Conventionally, basic surface treatment methods are used which include physical and chemical deposition. The major drawbacks associated with these methods are excessive cost and poor adhesion of coating with implant material. To generate a bioactive surface on an implant, electric discharge machining (EDM) is a promising and emerging technology which simultaneously serves as machining and surface modification technique. Besides the surface topology, implant material plays a very important role in surgical applications. From various implant materials, titanium (Ti6Al4V ELI) alloy is the best choice for long-term hard body tissue replacement due to its superior engineering, excellent biocompatibility and antibacterial properties. In this research, EDM’s surface characteristics are explored using Si powder mixed in dielectric on Ti6Al4V ELI. The effect of powder concentration (5 g/L, 10 g/L and 20 g/L) along with pulse current and pulse on time is investigated on micro and nanoscale surface topography. Optimized process parameters having a 5 g/L powder concentration result in 2.76 μm surface roughness and 13.80 μm recast layer thickness. Furthermore, a nano-structured (50–200 nm) biocompatible surface is fabricated on the surface for better cell attachment and growth. A highly favourable carbon enriched surface is confirmed through EDS which increases adhesion and proliferation of human osteoblasts
    corecore