446 research outputs found

    Avoided crossing resonances: structural and dynamical aspects

    Full text link
    We examine structural and dynamical properties of quantum resonances associated with an avoided crossing and identify the parameter shifts where these properties attain maximal or extreme values, first at a general level, and then for a two-level system coupled to a harmonic oscillator, of the type commonly found in quantum optics. Finally the results obtained are exemplified and applied to optimize the fidelity and speed of quantum gates in trapped ions.Comment: 4 pages, 1 figur

    Explanation and observability of diffraction in time

    Get PDF
    Diffraction in time (DIT) is a fundamental phenomenon in quantum dynamics due to time-dependent obstacles and slits. It is formally analogous to diffraction of light, and is expected to play an increasing role to design coherent matter wave sources, as in the atom laser, to analyze time-of-flight information and emission from ultrafast pulsed excitations, and in applications of coherent matter waves in integrated atom-optical circuits. We demonstrate that DIT emerges robustly in quantum waves emitted by an exponentially decaying source and provide a simple explanation of the phenomenon, as an interference of two characteristic velocities. This allows for its controllability and optimization.Comment: 4 pages, 6 figure

    Optimally robust shortcuts to population inversion in two-level quantum systems

    Get PDF
    We examine the stability versus different types of perturbations of recently proposed shortcuts-to-adiabaticity to speed up the population inversion of a two-level quantum system. We find optimally robust processes using invariant based engineering of the Hamiltonian. Amplitude noise and systematic errors require different optimal protocols.Comment: 17 pages, 7 figure

    Classical picture of post-exponential decay

    Get PDF
    Post-exponential decay of the probability density of a quantum particle leaving a trap can be reproduced accurately, except for interference oscillations at the transition to the post-exponential regime, by means of an ensemble of classical particles emitted with constant probability per unit time and the same half-life as the quantum system. The energy distribution of the ensemble is chosen to be identical to the quantum distribution, and the classical point source is located at the scattering length of the corresponding quantum system. A 1D example is provided to illustrate the general argument

    The Hartman effect and weak measurements "which are not really weak"

    Get PDF
    We show that in wavepacket tunnelling localisation of the transmitted particle amounts to a quantum measurement of the delay it experiences in the barrier. With no external degree of freedom involved, the envelope of the wavepacket plays the role of the initial pointer state. Under tunnelling conditions such 'self measurement' is necessarily weak, and the Hartman effect just reflects the general tendency of weak values to diverge, as post-selection in the final state becomes improbable. We also demonstrate that it is a good precision, or 'not really weak' quantum measurement: no matter how wide the barrier d, it is possible to transmit a wavepacket with a width {\sigma} small compared to the observed advancement. As is the case with all weak measurements, the probability of transmission rapidly decreases with the ratio {\sigma}/d.Comment: 6 pages, 1 figur
    corecore