12 research outputs found

    Observation of counterion effects and dimensionality reduction in single-crystal (EDO-TTF)2SbF6 with ultrafast electron diffraction

    Get PDF
    Femtosecond electron diffraction is used to resolve structural dynamics in single-crystal (EDO-TTF)2XF6 (X = P, Sb). The retarded and lower-dimensional dynamics of the latter illustrate the dominant role of counterion motion in stabilizing electron transfer

    Observation of counterion effects and dimensionality reduction in single-crystal (EDO-TTF)

    Full text link
    Femtosecond electron diffraction is used to resolve structural dynamics in single-crystal (EDO-TTF)2XF6 (X = P, Sb). The retarded and lower-dimensional dynamics of the latter illustrate the dominant role of counterion motion in stabilizing electron transfer

    TakeTwo: an indexing algorithm suited to still images with known crystal parameters

    Full text link
    The indexing methods currently used for serial femtosecond crystallography were originally developed for experiments in which crystals are rotated in the X-ray beam, providing significant three-dimensional information. On the other hand, shots from both X-ray free-electron lasers and serial synchrotron crystallography experiments are still images, in which the few three-dimensional data available arise only from the curvature of the Ewald sphere. Traditional synchrotron crystallography methods are thus less well suited to still image data processing. Here, a new indexing method is presented with the aim of maximizing information use from a still image given the known unit-cell dimensions and space group. Efficacy for cubic, hexagonal and orthorhombic space groups is shown, and for those showing some evidence of diffraction the indexing rate ranged from 90% (hexagonal space group) to 151% (cubic space group). Here, the indexing rate refers to the number of lattices indexed per image

    Fixed target combined with spectral mapping: approaching 100% hit rates for serial crystallography

    Full text link
    The advent of ultrafast highly brilliant coherent X-ray free-electron laser sources has driven the development of novel structure-determination approaches for proteins, and promises visualization of protein dynamics on sub-picosecond timescales with full atomic resolution. Significant efforts are being applied to the development of sample-delivery systems that allow these unique sources to be most efficiently exploited for high-throughput serial femtosecond crystallography. Here, the next iteration of a fixed-target crystallography chip designed for rapid and reliable delivery of up to 11 259 protein crystals with high spatial precision is presented. An experimental scheme for predetermining the positions of crystals in the chip by means of in situ spectroscopy using a fiducial system for rapid, precise alignment and registration of the crystal positions is presented. This delivers unprecedented performance in serial crystallography experiments at room temperature under atmospheric pressure, giving a raw hit rate approaching 100% with an effective indexing rate of approximately 50%, increasing the efficiency of beam usage and allowing the method to be applied to systems where the number of crystals is limited

    The hit-and-return system enables efficient time-resolved serial synchrotron crystallography

    Full text link
    We present a ‘hit-and-return’ (HARE) method for time-resolved serial synchrotron crystallography with time resolution from milliseconds to seconds or longer. Timing delays are set mechanically, using the regular pattern in fixed-target crystallography chips and a translation stage system. Optical pump-probe experiments to capture intermediate structures of fluoroacetate dehalogenase binding to its ligand demonstrated that data can be collected at short (30 ms), medium (752 ms) and long (2,052 ms) intervals
    corecore