3 research outputs found
Collaborative Training of Medical Artificial Intelligence Models with non-uniform Labels
Artificial intelligence (AI) methods are revolutionizing medical image
analysis. However, robust AI models require large multi-site datasets for
training. While multiple stakeholders have provided publicly available
datasets, the ways in which these data are labeled differ widely. For example,
one dataset of chest radiographs might contain labels denoting the presence of
metastases in the lung, while another dataset of chest radiograph might focus
on the presence of pneumonia. With conventional approaches, these data cannot
be used together to train a single AI model. We propose a new framework that we
call flexible federated learning (FFL) for collaborative training on such data.
Using publicly available data of 695,000 chest radiographs from five
institutions - each with differing labels - we demonstrate that large and
heterogeneously labeled datasets can be used to train one big AI model with
this framework. We find that models trained with FFL are superior to models
that are trained on matching annotations only. This may pave the way for
training of truly large-scale AI models that make efficient use of all existing
data.Comment: 2 figures, 3 tables, 5 supplementary table