32,149 research outputs found
Ignition and combustion characteristics of metallized propellants
During this reporting period, theoretical work on the secondary atomization process was continued and the experimental apparatus was improved. A one-dimensional model of a rocket combustor, incorporating multiple droplet size classes, slurry combustion, secondary atomization, radiation heat transfer, and two-phase slip between slurry droplets and the gas flow was derived and a computer code was written to implement this model. The STANJAN chemical equilibrium solver was coupled with this code to yield gas temperature, density, and composition as functions of axial location. Preliminary results indicate that the model is performing correctly, given current model assumptions. Radiation heat transfer in the combustion chamber is treated as an optically-thick participating media problem requiring a solution of the radiative transfer equation. A cylindrical P sub 1 approximation was employed to yield an analytical expression for chamber-wall heat flux at each axial location. The code exercised to determine the effects of secondary atomization intensity, defined as the number of secondary drops produced per initial drop, on chamber burnout distance and final Al2O3 agglomerate diameter. These results indicate that only weak secondary atomization is required to significantly reduce these two parameters. Stronger atomization intensities were found to yield decreasing marginal benefits. The experimental apparatus was improved to reduce building vibration effects on the optical system alignment. This was accomplished by mounting the burner and the transmitting/receiving optics on a single frame supported by vibration-isolation legs. Calibration and shakedown tests indicate that vibration problems were eliminated and that the system is performing correctly
Ignition and combustion characteristics of metallized propellants
Experimental and analytical investigations focusing on secondary atomization and ignition characteristics of aluminum/liquid hydrocarbon slurry propellants were conducted. Experimental efforts included the application of a laser-based, two-color, forward-scatter technique to simultaneously measure free-flying slurry droplet diameters and velocities for droplet diameters in the range of 10-200 microns. A multi-diffusion flame burner was used to create a high-temperature environment into which a dilute stream of slurry droplets could be introduced. Narrowband measurements of radiant emission were used to determine if ignition of the aluminum in the slurry droplet had occurred. Models of slurry droplet shell formation were applied to aluminum/liquid hydrocarbon propellants and used to ascertain the effects of solids loading and ultimate particle size on the minimum droplet diameter that will permit secondary atomization. For a 60 weight-percent Al slurry, the limiting critical diameter was predicted to be 34.7 microns which is somewhat greater than the 20-25 micron limiting diameters determined in the experiments. A previously developed model of aluminum ignition in a slurry droplet was applied to the present experiments and found to predict ignition times in reasonable agreement with experimental measurements. A model was also developed that predicts the mechanical stress in the droplet shell and a parametric study was conducted. A one-dimensional model of a slurry-fueled rocket combustion chamber was developed. This model includes the processes of liquid hydrocarbon burnout, secondary atomization, aluminum ignition, and aluminum combustion. Also included is a model for radiant heat transfer from the hot aluminum oxide particles to the chamber walls. Exercising this model shows that only a modest amount of secondary atomization is required to reduce residence times for aluminum burnout, and thereby maintain relatively short chamber lengths. The model also predicts radiant heat transfer losses to the walls to be only approximately 3 percent of the fuel energy supplied. Additional work is required to determine the effects of secondary atomization on two-phase losses in the nozzle
Ignition and combustion characteristics of metallized propellants
Over the past six months, experimental investigations were continued and theoretical work on the secondary atomization process was begun. Final shakedown of the sizing/velocity measuring system was completed and the aluminum combustion detection system was modified and tested. Atomizer operation was improved to allow steady state operation over long periods of time for several slurries. To validate the theoretical modeling, work involving carbon slurry atomization and combustion was begun and qualitative observations were made. Simultaneous measurements of aluminum slurry droplet size distributions and detection of burning aluminum particles were performed at several axial locations above the burner. The principle theoretical effort was the application of a rigid shell formation model to aluminum slurries and an investigation of the effects of various parameters on the shell formation process. This shell formation model was extended to include the process leading up to droplet disruption, and previously developed analytical models were applied to yield theoretical aluminum agglomerate ignition and combustion times. The several theoretical times were compared with the experimental results
Solar Orbiter: Exploring the Sun-heliosphere connection
The heliosphere represents a uniquely accessible domain of space, where
fundamental physical processes common to solar, astrophysical and laboratory
plasmas can be studied under conditions impossible to reproduce on Earth and
unfeasible to observe from astronomical distances. Solar Orbiter, the first
mission of ESA's Cosmic Vision 2015-2025 programme, will address the central
question of heliophysics: How does the Sun create and control the heliosphere?
In this paper, we present the scientific goals of the mission and provide an
overview of the mission implementation.Comment: 52 pages, 21 figures, 125 references; accepted for publication in
Solar Physic
Ignition and combustion characteristics of metallized propellants
Research designed to develop detailed knowledge of the secondary atomization and ignition characteristics of aluminum slurry propellants was started. These processes are studied because they are the controlling factors limiting the combustion efficiency of aluminum slurry propellants in rocket applications. A burner and spray rig system allowing the study of individual slurry droplets having diameters from about 10 to 100 microns was designed and fabricated. The burner generates a near uniform high temperature environment from the merging of 72 small laminar diffusion flames above a honeycomb matrix. This design permits essentially adiabatic operation over a wide range of stoichiometries without danger of flashback. A single particle sizing system and velocimeter also were designed and assembled. Light scattered from a focused laser beam is related to the particle (droplet) size, while the particle velocity is determined by its transit time through the focal volume. Light from the combustion of aluminum is also sensed to determine if ignition was achieved. These size and velocity measurements will allow the determination of disruption and ignition times as functions of drop sizes and ambient conditions
Evolution and Modern Approaches for Thermal Analysis of Electrical Machines
In this paper, the authors present an extended survey on the evolution and the modern approaches in the thermal analysis of electrical machines. The improvements and the new techniques proposed in the last decade are analyzed in depth and compared in order to highlight the qualities and defects of each. In particular, thermal analysis based on lumped-parameter thermal network, finite-element analysis, and computational fluid dynamics are considered in this paper. In addition, an overview of the problems linked to the thermal parameter determination and computation is proposed and discussed. Taking into account the aims of this paper, a detailed list of books and papers is reported in the references to help researchers interested in these topics
Vertical variation of optical properties of mixed Asian dust/pollution plumes according to pathway of air mass transport over East Asia
© Author(s) 2015. This is an Open Access article made available under the terms of the Creative Commons Attribution License 3.0 https://creativecommons.org/licenses/by/3.0/We use five years (2009-2013) of multiwavelength Raman lidar measurements at Gwangju, South Korea (35.10° N, 126.53° E) for the identification of changes of optical properties of East Asian dust depending on its transport path over China. Profiles of backscatter and extinction coefficients, lidar ratios, and backscatter-related Ångström exponents (wavelength pair 355/532 nm) were measured at Gwangju. Linear particle depolarization ratios were used to identify East Asian dust layers. We used backward trajectory modeling to identify the pathway and the vertical position of dust-laden air masses over China during long-range transport. Most cases of Asian dust events can be described by the emission of dust in desert areas and subsequent transport over highly polluted regions of China. The Asian dust plumes could be categorized into two classes according to the height above ground at which these plumes were transported: (case I) the dust layers passed over China at high altitude levels (> 3 km) until arrival over Gwangju, and (case II) the Asian dust layers were transported near the surface and within the lower troposphere (< 3 km) over industrialized areas before they arrived over Gwangju. We find that the optical characteristics of these mixed Asian dust layers over Gwangju differ depending on their vertical position above ground over China and the change of height above ground during transport. The mean linear particle depolarization ratio was 0.21 ± 0.06 (at 532 nm), the mean lidar ratios were 52 ± 7 sr at 355 nm and 53 ± 8 sr at 532 nm, and the mean Ångström exponent was 0.74 ± 0.31 for case I. In contrast, plumes transported at lower altitudes (case II) showed low depolarization ratios (0.13 ± 0.04 at 532 nm), and higher lidar ratio (63 ± 9 sr at 355 nm and 62 ± 8 sr at 532 nm) and Ångström exponents (0.98 ± 0.51). These numbers show that the optical characteristics of mixed Asian plumes are more similar to optical characteristics of urban pollution. We find a decrease of the linear depolarization ratio of the mixed dust/pollution plume depending on transport time if the pollution layer traveled over China at low heights, i.e., below approximately 3 km above ground. In contrast, we do not find such a trend if the dust plumes traveled at heights above 3 km over China. We need a longer time series of lidar measurements in order to determine in a quantitative way the change of optical properties of dust with transport time.Peer reviewedFinal Published versio
- …