33,950 research outputs found
Multi-parton correlations and "exclusive" cross sections
In addition to the inclusive cross sections discussed within the QCD-parton
model, in the regime of multiple parton interactions, different and more
exclusive cross sections become experimentally viable and may be suitably
measured. Indeed, in its study of double parton collisions, the quantity
measured by CDF was an "exclusive" rather than an inclusive cross section. The
non perturbative input to the "exclusive" cross sections is different with
respect to the non perturbative input of the inclusive cross sections and
involves correlation terms of the hadron structure already at the level of
single parton collisions. The matter is discussed in details keeping explicitly
into account the effects of double and of triple parton collisions.Comment: 18 pages, no figures, corrected typo
Quantum Google in a Complex Network
We investigate the behavior of the recently proposed quantum Google
algorithm, or quantum PageRank, in large complex networks. Applying the quantum
algorithm to a part of the real World Wide Web, we find that the algorithm is
able to univocally reveal the underlying scale-free topology of the network and
to clearly identify and order the most relevant nodes (hubs) of the graph
according to their importance in the network structure. Moreover, our results
show that the quantum PageRank algorithm generically leads to changes in the
hierarchy of nodes. In addition, as compared to its classical counterpart, the
quantum algorithm is capable to clearly highlight the structure of secondary
hubs of the network, and to partially resolve the degeneracy in importance of
the low lying part of the list of rankings, which represents a typical
shortcoming of the classical PageRank algorithm. Complementary to this study,
our analysis shows that the algorithm is able to clearly distinguish scale-free
networks from other widespread and important classes of complex networks, such
as Erd\H{o}s-R\'enyi networks and hierarchical graphs. We show that the ranking
capabilities of the quantum PageRank algorithm are related to an increased
stability with respect to a variation of the damping parameter that
appears in the Google algorithm, and to a more clearly pronounced power-law
behavior in the distribution of importance among the nodes, as compared to the
classical algorithm. Finally, we study to which extent the increased
sensitivity of the quantum algorithm persists under coordinated attacks of the
most important nodes in scale-free and Erd\H{o}s-R\'enyi random graphs
Derivation of phenomenological expressions for transition matrix elements for electron-phonon scattering
In the literature on electron-phonon scatterings very often a
phenomenological expression for the transition matrix element is used which was
derived in the textbooks of Ashcroft/Mermin and of Czycholl. There are various
steps in the derivation of this expression. In the textbooks in part different
arguments have been used in these steps, but the final result is the same. In
the present paper again slightly different arguments are used which motivate
the procedure in a more intuitive way. Furthermore, we generalize the
phenomenological expression to describe the dependence of the matrix elements
on the spin state of the initial and final electron state
N/P GaAs concentrator solar cells with an improved grid and bushbar contact design
The major requirements for a solar cell used in space applications are high efficiency at AMO irradiance and resistance to high energy radiation. Gallium arsenide, with a band gap of 1.43 eV, is one of the most efficient sunlight to electricity converters (25%) when the the simple diode model is used to calculate efficiencies at AMO irradiance, GaAs solar cells are more radiation resistant than silicon solar cells and the N/P GaAs device has been reported to be more radiation resistant than similar P/N solar cells. This higher resistance is probably due to the fact that only 37% of the current is generated in the top N layer of the N/P cell compared to 69% in the top layer of a P/N solar cell. This top layer of the cell is most affected by radiation. It has also been theoretically calculated that the optimized N/P device will prove to have a higher efficiency than a similar P/N device. The use of a GaP window layer on a GaAs solar cell will avoid many of the inherent problems normally associated with a GaAlAs window while still proving good passivation of the GaAs surface. An optimized circular grid design for solar cell concentrators has been shown which incorporates a multi-layer metallization scheme. This multi-layer design allows for a greater current carrying capacity for a unit area of shading, which results in a better output efficiency
Static and dynamic structure factors in the Haldane phase of the bilinear-biquadratic spin-1
The excitation spectra of the T=0 dynamic structure factors for the spin,
dimer, and trimer fluctuation operators as well as for the newly defined center
fluctuation operator in the one-dimensional S=1 Heisenberg model wi th
isotropic bilinear and biquadratic exchange are
investigated via the recursion method for systems with up to N=18 site s over
the predicted range, , of the topologically ordered
Haldane phase. The four static and dynamic structure factors probe t he
ordering tendencies in the various coupling regimes and the elementary and
composite excitations which dominate the T=0 dynamics. At (VBS point), the dynamically relevant spectra in the invariant
subspaces with total spin are dominated by a branch of magnon
states , by continua of two-magnon scattering states , and by discrete branches of two-magnon bound states with positive
interaction energy . The dimer and trimer spectra at ar e
found to consist of single modes with -independent excitation energies
and , where is
the ground-state energy per site. The basic structure of the dynamically
relevant excitation spectrum remains the same over a substantial parameter
range within the Haldane phase. At the transition to the dimerized phase
(), the two-magnon excitations turn into two-spinon excitations.Comment: 12 pages, 4 Postscript figure
Recommended from our members
Brainstem atrophy in focal epilepsy destabilizes brainstem-brain interactions: Preliminary findings.
BACKGROUND: MR Imaging has shown atrophy in brainstem regions that were linked to autonomic dysfunction in epilepsy patients. The brainstem projects to and modulates the activation state of several wide-spread cortical/subcortical regions. The goal was to investigate 1. Impact of brainstem atrophy on gray matter connectivity of cortical/subcortical structures and autonomic control. 2. Impact on the modulation of cortical/subcortical functional connectivity.
METHODS: 11 controls and 18 patients with non-lesional focal epilepsy (FE) underwent heart rate variability (HRV) measurements and a 3 T MRI (T1 in all subjects, task-free fMRI in 7 controls/ 12 FE). The brainstem was extracted, and atrophy assessed using deformation-based-morphometry. The age-corrected z-scores of the mean Jacobian determinants were extracted from 71 5x5x5 mm grids placed in brainstem regions associated with autonomic function. Cortical and non-brainstem subcortical gray matter atrophy was assessed with voxel-based-morphometry and mean age corrected z-scores of the modulated gray matter volumes extracted from 380 cortical/subcortical rois. The profile similarity index was used to characterize the impact of brainstem atrophy on gray matter connectivity. The fMRI was preprocessed in SPM12/Conn17 and the BOLD signal extracted from 398 ROIs (16 brainstem). A dynamic task-free analysis approach was used to identify activation states. Connectivity HRV relationship were assessed with Spearman rank correlations.
RESULTS: HRV was negatively correlated with reduced brainstem right hippocampus/parahippocampus gray matter connectivity in controls (p \u3c .05, FDR) and reduced brainstem to right parietal cortex, lingual gyrus, left hippocampus/amygdala, parahippocampus, temporal pole, and bilateral anterior thalamus connectivity in FE (p \u3c .05, FDR). Dynamic task-free fMRI analysis identified 22 states. The strength of the functional brainstem/cortical connectivity of state 15 was negatively associated with HRV (r = -0.5, p = .03) and positively with decreased brainstem-cortical (0.49, p = .03) gray matter connectivity.
CONCLUSION: The findings of this small pilot study suggest that impaired brainstem-cortex gray matter connectivity in FE negatively affects the brainstem\u27s ability to control cortical activation
Analytic pulse design for selective population transfer in many-level quantum systems: maximizing amplitude of population oscillations
State selective preparation and manipulation of discrete-level quantum
systems such as atoms, molecules or quantum dots is a the ultimate tool for
many diverse fields such as laser control of chemical reactions, atom optics,
high-precision metrology and quantum computing. Rabi oscillations are one of
the simplest, yet potentially quite useful mechanisms for achieving such
manipulation. Rabi theory establishes that in the two-level systems resonant
drive leads to the periodic and complete population oscillations between the
two system levels. In this paper an analytic optimization algorithm for
producing Rabi-like oscillations in the general discrete many-level quantum
systems is presented.Comment: Published in Phys.Rev.A. This is the final published versio
- …