930 research outputs found

    Optical properties of TiBe2 in the range from 0.5 to 3.3 eV

    Get PDF
    The optical properties of polycrystalline TiBe2 have been determined by ellipsometry in the visible and infrared region. The most predominant features of the spectra are in excellent agreement with a calculation of the optical conductivity

    Magnetic fluctuations in 2D metals close to the Stoner instability

    Full text link
    We consider the effect of potential disorder on magnetic properties of a two-dimensional metallic system (with conductance g≫1g\gg 1) when interaction in the triplet channel is so strong that the system is close to the threshold of the Stoner instability. We show, that under these conditions there is an exponentially small probability for the system to form local spin droplets which are local regions with non zero spin density. Using a non-local version of the optimal fluctuation method we find analytically the probability distribution and the typical spin of a local spin droplet (LSD). In particular, we show that both the probability to form a LSD and its typical spin are independent of the size of the droplet (within the exponential accuracy). The LSDs manifest themselves in temperature dependence of observable quantities. We show, that below certain cross-over temperature the paramagnetic susceptibility acquires the Curie-like temperature dependence, while the dephasing time (extracted from magneto-resistance measurements) saturates.Comment: 15 pages, 4 figure

    Correlations between resonances in a statistical scattering model

    Full text link
    The distortion of the regular motion in a quantum system by its coupling to the continuum of decay channels is investigated. The regular motion is described by means of a Poissonian ensemble. We focus on the case of only few channels K<10. The coupling to the continuum induces two main effects, due to which the distorted system differs from a chaotic system (described by a Gaussian ensemble): 1. The width distribution for large coupling becomes broader than the corresponding χK2\chi^2_K distribution in the GOE case. 2. Due to the coupling to the continuum, correlations are induced not only between the positions of the resonances but also between positions and widths. These correlations remain even in the strong coupling limit. In order to explain these results, an asymptotic expression for the width distribution is derived for the one channel case. It relates the width of a trapped resonance state to the distance between its two neighboring levels.Comment: 23 pages, 7 Postscript figures. Submitted to Phys. Rev. E, Jan. 9

    Absence of Persistent Magnetic Oscillations in Type-II Superconductors

    Full text link
    We report on a numerical study intended to examine the possibility that magnetic oscillations persist in type II superconductors beyond the point where the pairing self-energy exceeds the normal state Landau level separation. Our work is based on the self-consistent numerical solution for model superconductors of the Bogoliubov-deGennes equations for the vortex lattice state. In the regime where the pairing self-energy is smaller than the cyclotron energy, magnetic oscillations resulting from Landau level quantization are suppressed by the broadening of quasiparticle Landau levels due to the non-uniform order parameter of the vortex lattice state, and by splittings of the quasiparticle bands. Plausible arguments that the latter effect can lead to a sign change of the fundamental harmonic of the magnetic oscillations when the pairing self-energy is comparable to the cyclotron energy are shown to be flawed. Our calculations indicate that magnetic oscillations are strongly suppressed once the pairing self-energy exceeds the Landau level separation.Comment: 7 pages, revtex, 7 postscript figure

    Elastic scattering and breakup of 17^F at 10 MeV/nucleon

    Full text link
    Angular distributions of fluorine and oxygen produced from 170 MeV 17^F incident on 208^Pb were measured. The elastic scattering data are in good agreement with optical model calculations using a double-folding potential and parameters similar to those obtained from 16^O+208^Pb. A large yield of oxygen was observed near \theta_lab=36 deg. It is reproduced fairly well by a calculation of the (17^F,16^O) breakup, which is dominated by one-proton stripping reactions. The discrepancy between our previous coincidence measurement and theoretical predictions was resolved by including core absorption in the present calculation.Comment: 9 pages, 5 figure

    Specific Heat of Liquid Helium in Zero Gravity very near the Lambda Point

    Full text link
    We report the details and revised analysis of an experiment to measure the specific heat of helium with subnanokelvin temperature resolution near the lambda point. The measurements were made at the vapor pressure spanning the region from 22 mK below the superfluid transition to 4 uK above. The experiment was performed in earth orbit to reduce the rounding of the transition caused by gravitationally induced pressure gradients on earth. Specific heat measurements were made deep in the asymptotic region to within 2 nK of the transition. No evidence of rounding was found to this resolution. The optimum value of the critical exponent describing the specific heat singularity was found to be a = -0.0127+ - 0.0003. This is bracketed by two recent estimates based on renormalization group techniques, but is slightly outside the range of the error of the most recent result. The ratio of the coefficients of the leading order singularity on the two sides of the transition is A+/A- =1.053+ - 0.002, which agrees well with a recent estimate. By combining the specific heat and superfluid density exponents a test of the Josephson scaling relation can be made. Excellent agreement is found based on high precision measurements of the superfluid density made elsewhere. These results represent the most precise tests of theoretical predictions for critical phenomena to date.Comment: 27 Pages, 20 Figure
    • …
    corecore