3,358 research outputs found
Recommended from our members
Quality of Supply in Energy Regulation Measurement,Assessment and Experience from Norway
Paraplegia Following Pneumonectomy and Descending Thoracic Aorta Mass Resection
We present a case of paraplegia following an en bloc resection of a lung mass with thoracic aorta involvement. This complex case poses the opportunity to discuss several perioperative issues: fluid management for pneumonectomy; fluid management for thoracic aorta cross-clamping; and spinal cord ischemia
Granulysin-Expressing CD4+ T Cells as Candidate Immune Marker for Tuberculosis during Childhood and Adolescence
BACKGROUND: Granulysin produced by cytolytic T cells directly contributes to immune defense against tuberculosis (TB). We investigated granulysin as a candidate immune marker for childhood and adolescent TB. METHODS: Peripheral blood mononuclear cells (PBMC) from children and adolescents (1-17 years) with active TB, latent TB infection (LTBI), nontuberculous mycobacteria (NTM) infection and from uninfected controls were isolated and restimulated in a 7-day restimulation assay. Intracellular staining was then performed to analyze antigen-specific induction of activation markers and cytotoxic proteins, notably, granulysin in CD4(+) CD45RO(+) memory T cells. RESULTS: CD4(+) CD45RO(+) T cells co-expressing granulysin with specificity for Mycobacterium tuberculosis (Mtb) were present in high frequency in TB-experienced children and adolescents. Proliferating memory T cells (CFSE(low)CD4(+)CD45RO(+)) were identified as main source of granulysin and these cells expressed both central and effector memory phenotype. PBMC from study participants after TB drug therapy revealed that granulysin-expressing CD4(+) T cells are long-lived, and express several activation and cytotoxicity markers with a proportion of cells being interferon-gamma-positive. In addition, granulysin-expressing T cell lines showed cytolytic activity against Mtb-infected target cells. CONCLUSIONS: Our data suggest granulysin expression by CD4(+) memory T cells as candidate immune marker for TB infection, notably, in childhood and adolescence
Recommended from our members
Exploring uncertainties in global crop yield projections in a large ensemble of crop models and CMIP5 and CMIP6 climate scenarios
Concerns over climate change are motivated in large part because of their impact on human society. Assessing the effect of that uncertainty on specific potential impacts is demanding, since it requires a systematic survey over both climate and impacts models. We provide a comprehensive evaluation of uncertainty in projected crop yields for maize, spring and winter wheat, rice, and soybean, using a suite of nine crop models and up to 45 CMIP5 and 34 CMIP6 climate projections for three different forcing scenarios. To make this task computationally tractable, we use a new set of statistical crop model emulators. We find that climate and crop models contribute about equally to overall uncertainty. While the ranges of yield uncertainties under CMIP5 and CMIP6 projections are similar, median impact in aggregate total caloric production is typically more negative for the CMIP6 projections (+1% to −19%) than for CMIP5 (+5% to −13%). In the first half of the 21st century and for individual crops is the spread across crop models typically wider than that across climate models, but we find distinct differences between crops: globally, wheat and maize uncertainties are dominated by the crop models, but soybean and rice are more sensitive to the climate projections. Climate models with very similar global mean warming can lead to very different aggregate impacts so that climate model uncertainties remain a significant contributor to agricultural impacts uncertainty. These results show the utility of large-ensemble methods that allow comprehensively evaluating factors affecting crop yields or other impacts under climate change. The crop model ensemble used here is unbalanced and pulls the assumption that all projections are equally plausible into question. Better methods for consistent model testing, also at the level of individual processes, will have to be developed and applied by the crop modeling community
Gravitomagnetism in the Kerr-Newman-Taub-NUT spacetime
We study the motion of test particles and electromagnetic waves in the
Kerr-Newman-Taub-NUT spacetime in order to elucidate some of the effects
associated with the gravitomagnetic monopole moment of the source. In
particular, we determine in the linear approximation the contribution of this
monopole to the gravitational time delay and the rotation of the plane of the
polarization of electromagnetic waves. Moreover, we consider "spherical" orbits
of uncharged test particles in the Kerr-Taub-NUT spacetime and discuss the
modification of the Wilkins orbits due to the presence of the gravitomagnetic
monopole.Comment: 12 pages LaTeX iopart style, uses PicTex for 1 Figur
Implementing Silicon Nanoribbon Field-Effect Transistors as Arrays for Multiple Ion Detection
Ionic gradients play a crucial role in the physiology of the human body, ranging from metabolism in cells to muscle contractions or brain activities. To monitor these ions, inexpensive, label-free chemical sensing devices are needed. Field-effect transistors (FETs) based on silicon (Si) nanowires or nanoribbons (NRs) have a great potential as future biochemical sensors as they allow for the integration in microscopic devices at low production costs. Integrating NRs in dense arrays on a single chip expands the field of applications to implantable electrodes or multifunctional chemical sensing platforms. Ideally, such a platform is capable of detecting numerous species in a complex analyte. Here, we demonstrate the basis for simultaneous sodium and fluoride ion detection with a single sensor chip consisting of arrays of gold-coated SiNR FETs. A microfluidic system with individual channels allows modifying the NR surfaces with self-assembled monolayers of two types of ion receptors sensitive to sodium and fluoride ions. The functionalization procedure results in a differential setup having active fluoride-and sodium-sensitive NRs together with bare gold control NRs on the same chip. Comparing functionalized NRs with control NRs allows the compensation of non-specific contributions from changes in the background electrolyte concentration and reveals the response to the targeted species
A Revised Framework for the Investigation of Expectation Update Versus Maintenance in the Context of Expectation Violations: The ViolEx 2.0 Model
Expectations are probabilistic beliefs about the future that shape and influence our
perception, affect, cognition, and behavior in many contexts. This makes expectations
a highly relevant concept across basic and applied psychological disciplines. When
expectations are confirmed or violated, individuals can respond by either updating or
maintaining their prior expectations in light of the new evidence. Moreover, proactive
and reactive behavior can change the probability with which individuals encounter
expectation confirmations or violations. The investigation of predictors and mechanisms
underlying expectation update and maintenance has been approached from many
research perspectives. However, in many instances there has been little exchange
between different research fields. To further advance research on expectations and
expectation violations, collaborative efforts across different disciplines in psychology,
cognitive (neuro)science, and other life sciences are warranted. For fostering and
facilitating such efforts, we introduce the ViolEx 2.0 model, a revised framework
for interdisciplinary research on cognitive and behavioral mechanisms of expectation
update and maintenance in the context of expectation violations. To support different
goals and stages in interdisciplinary exchange, the ViolEx 2.0 model features three
model levels with varying degrees of specificity in order to address questions about
the research synopsis, central concepts, or functional processes and relationships,
respectively. The framework can be applied to different research fields and has high
potential for guiding collaborative research efforts in expectation research
Targeted gene delivery to the enteric nervous system using AAV: a comparison across serotypes and capsid mutants
Recombinant adeno-associated virus (AAV) vectors are one of the most widely used gene transfer systems in research and clinical trials. AAV can transduce a wide range of biological tissues, however to date, there has been no investigation on targeted AAV transduction of the enteric nervous system (ENS). Here, we examined the efficiency, tropism, spread, and immunogenicity of AAV transduction in the ENS. Rats received direct injections of various AAV serotypes expressing green fluorescent protein (GFP) into the descending colon. AAV serotypes tested included; AAV 1, 2, 5, 6, 8, or 9 and the AAV2 and AAV8 capsid mutants, AAV2-Y444F, AAV2-tripleY-F, AAV2-tripleY-F+T-V, AAV8-Y733F, and AAV8-doubeY-F+T-V. Transduction, as determined by GFP-positive cells, occurred in neurons and enteric glia within the myenteric and submucosal plexuses of the ENS. AAV6 and AAV9 showed the highest levels of transduction within the ENS. Transduction efficiency scaled with titer and time, was translated to the murine ENS, and produced no vector-related immune response. A single injection of AAV into the colon covered an area of ~47 mm(2). AAV9 primarily transduced neurons, while AAV6 transduced enteric glia and neurons. This is the first report on targeted AAV transduction of neurons and glia in the ENS
- …