176 research outputs found

    Wave packet dynamics in triplet states of Na2 attached to helium nanodroplets

    Get PDF
    The dynamics of vibrational wave packets excited in Na2 dimers in the triplet ground and excited states is investigated by means of helium nanodroplet isolation (HENDI) combined with femtosecond pump-probe spectroscopy. Different pathways in the employed resonant multi-photon ionization scheme are identified. Within the precision of the method, the wave packet dynamics appears to be unperturbed by the helium droplet environment

    Atom-molecule collisions in an optically trapped gas

    Full text link
    Cold inelastic collisions between confined cesium (Cs) atoms and Cs_2\_2 molecules are investigated inside a CO_2\_2 laser dipole trap. Inelastic atom-molecule collisions can be observed and measured with a rate coefficient of ∼2.5×10−11\sim 2.5 \times 10^{-11} cm3^3 s−1^{-1}, mainly independent of the molecular ro-vibrational state populated. Lifetimes of purely atomic and molecular samples are essentially limited by rest gas collisions. The pure molecular trap lifetime ranges 0,3-1 s, four times smaller than the atomic one, as is also observed in a pure magnetic trap. We give an estimation of the inelastic molecule-molecule collision rate to be ∼10−11\sim 10^{-11} cm3^{3} s−1^{-1}

    Development of a Coupling Model for Fluid-Structure Interaction using the Mesh-free Finite Element Method and the Lattice Boltzmann Method

    Get PDF
    In the presented thesis work, the meshfree method with distance fields was coupled with the lattice Boltzmann method to obtain solutions of fluid-structure interaction problems. The thesis work involved development and implementation of numerical algorithms, data structure, and software. Numerical and computational properties of the coupling algorithm combining the meshfree method with distance fields and the lattice Boltzmann method were investigated. Convergence and accuracy of the methodology was validated by analytical solutions. The research was focused on fluid-structure interaction solutions in complex, mesh-resistant domains as both the lattice Boltzmann method and the meshfree method with distance fields are particularly adept in these situations. Furthermore, the fluid solution provided by the lattice Boltzmann method is massively scalable, allowing extensive use of cutting edge parallel computing resources to accelerate this phase of the solution process. The meshfree method with distance fields allows for exact satisfaction of boundary conditions making it possible to exactly capture the effects of the fluid field on the solid structure

    The excitation function for Li+HF-->LiF+H at collision energies below 80 meV

    Full text link
    We have measured the dependence of the relative integral cross section of the reaction Li+HF-->LiF+H on the collision energy using crossed molecular beams. By varying the intersection angle of the beams from 37{\deg} to 90{\deg} we covered the energy range 25 meV < E_tr < 131 meV. We observe a monotonous rise of the cross section with decreasing energy over the entire energy range indicating that a possible translational energy threshold to the reaction is significantly smaller than 25 meV. The steep rise is quantitatively recovered by a Langevin-type excitation function based on a vanishing threshold and a mean interaction potential energy ~R^-2.5 where R is the distance between the reactants. To date all threshold energies deduced from ab-initio potentials and zero-point vibrational energies are at variance with our results, however, our findings support recent quantum scattering calculations that predict significant product formation at collision energies far below these theoretical thresholds.Comment: 8 pages, 7 figure

    Mixture of ultracold lithium and cesium atoms in an optical dipole trap

    Full text link
    We present the first simultaneous trapping of two different ultracold atomic species in a conservative trap. Lithium and cesium atoms are stored in an optical dipole trap formed by the focus of a CO2_2 laser. Techniques for loading both species of atoms are discussed and observations of elastic and inelastic collisions between the two species are presented. A model for sympathetic cooling of two species with strongly different mass in the presence of slow evaporation is developed. From the observed Cs-induced evaporation of Li atoms we estimate a cross section for cold elastic Li-Cs collisions.Comment: 10 pages 9 figures, submitted to Appl. Phys. B; v2: Corrected evaporation formulas and some postscript problem
    • …
    corecore