7 research outputs found

    Further structural studies of the lytic polysaccharide monooxygenase AoAA13 belonging to the starch-active AA13 family

    Get PDF
    Lytic polysaccharide monooxygenases (LPMOs) are recently discovered copper enzymes that cleave recalcitrant polysaccharides by oxidation. The structure of an Aspergillus oryzae LPMO from the starch degrading family AA13 (AoAA13) has previously been determined from an orthorhombic crystal grown in the presence of copper, which is photoreduced in the structure. Here we describe how crystals reliably grown in presence of Zn can be Cu-loaded post crystallization. A partly photoreduced structure was obtained by severely limiting the X-ray dose, showing that this LPMO is much more prone to photoreduction than others. A serial synchrotron crystallography structure was also obtained, showing that this technique may be promising for further studies, to reduce even further photoreduction. We additionally present a triclinic structure of AoAA13, which has less occluded ligand binding site than the orthorhombic one. The availability of the triclinic crystals prompted new ligand binding studies, which lead us to the conclusion that small starch analogues do not bind to AoAA13 to an appreciable extent. A number of disordered conformations of the metal binding histidine brace have been encountered in this and other studies, and we have previously hypothesized that this disorder may be a consequence of loss of copper. We performed molecular dynamics in the absence of active site metal, and showed that the dynamics in solution differ somewhat from the disorder observed in the crystal, though the extent is equally dramatic

    Changes in active-site geometry on X-ray photoreduction of a lytic polysaccharide monooxygenase active-site copper and saccharide binding

    No full text
    The recently discovered lytic polysaccharide monooxygenases (LPMOs) are Cu-containing enzymes capable of degrading polysaccharide substrates oxidatively. The generally accepted first step in the LPMO reaction is the reduction of the active-site metal ion from Cu2+^{2+} to Cu+^+. Here we have used a systematic diffraction data collection method to monitor structural changes in two AA9 LPMOs, one from Lentinus similis (LsAA9_A) and one from Thermoascus auranti­acus (TaAA9_A), as the active-site Cu is photoreduced in the X-ray beam. For LsAA9_A, the protein produced in two different recombinant systems was crystallized to probe the effect of post-translational modifications and different crystallization conditions on the active site and metal photoreduction. We can recommend that crystallographic studies of AA9 LPMOs wishing to address the Cu2+^{2+} form use a total X-ray dose below 3 × 104 Gy, while the Cu+^+ form can be attained using 1 × 106 Gy. In all cases, we observe the transition from a hexa­coordinated Cu site with two solvent-facing ligands to a T-shaped geometry with no exogenous ligands, and a clear increase of the θ2θ_2 parameter and a decrease of the θ3 parameter by averages of 9.2° and 8.4°, respectively, but also a slight increase in θTθ_T. Thus, the θ2θ_2 and θ3θ_3 parameters are helpful diagnostics for the oxidation state of the metal in a His-brace protein. On binding of cello-oligosaccharides to LsAA9_A, regardless of the production source, the θTθ_T parameter increases, making the Cu site less planar, while the active-site Tyr—Cu distance decreases reproducibly for the Cu2+^{2+} form. Thus, the θTθ_T increase found on copper reduction may bring LsAA9_A closer to an oligosaccharide-bound state and contribute to the observed higher affinity of reduced LsAA9_A for cellulosic substrates

    Copper binding and reactivity at the histidine brace motif: insights from mutational analysis of the Pseudomonas fluorescens copper chaperone CopC

    No full text
    The histidine brace (His-brace) is a copper-binding motif that is associated with both oxidative enzymes and proteinaceous copper chaperones. Here, we used biochemical and structural methods to characterize mutants of a His-brace-containing copper chaperone from Pseudomonas fluorescens (PfCopC). A total of 15 amino acid variants in primary and second-sphere residues were produced and characterized in terms of their copper binding and redox properties. PfCopC has a very high affinity for Cu(II) and also binds Cu(I). A high reorganization barrier likely prevents redox cycling and, thus, catalysis. In contrast, mutations in the conserved second-sphere Glu27 enable slow oxidation of ascorbate. The crystal structure of the variant E27A confirmed copper binding at the His-brace. Unexpectedly, Asp83 at the equatorial position was shown to be indispensable for Cu(II) binding in the His-brace of PfCopC. A PfCopC mutant that was designed to mimic the His-brace from lytic polysaccharide monooxygenase-like family X325 did not bind Cu(II), but was still able to bind Cu(I). These results highlight the importance of the proteinaceous environment around the copper His-brace for reactivity and, thus, the difference between enzyme and chaperone

    Copper binding and reactivity at the histidine brace motif: insights from mutational analysis of the Pseudomonas fluorescens

    No full text
    The histidine brace (His-brace) is a copper-binding motif that is associated with both oxidative enzymes and proteinaceous copper chaperones. Here, we used biochemical and structural methods to characterize mutants of a His-brace-containing copper chaperone from Pseudomonas fluorescens (PfCopC). A total of 15 amino acid variants in primary and second-sphere residues were produced and characterized in terms of their copper binding and redox properties. PfCopC has a very high affinity for Cu(II) and also binds Cu(I). A high reorganization barrier likely prevents redox cycling and, thus, catalysis. In contrast, mutations in the conserved second-sphere Glu27 enable slow oxidation of ascorbate. The crystal structure of the variant E27A confirmed copper binding at the His-brace. Unexpectedly, Asp83 at the equatorial position was shown to be indispensable for Cu(II) binding in the His-brace of PfCopC. A PfCopC mutant that was designed to mimic the His-brace from lytic polysaccharide monooxygenase-like family X325 did not bind Cu(II), but was still able to bind Cu(I). These results highlight the importance of the proteinaceous environment around the copper His-brace for reactivity and, thus, the difference between enzyme and chaperone

    Engineering the substrate binding site of the hyperthermostable archaeal endo-β-1,4-galactanase from <i>Ignisphaera aggregans</i>

    No full text
    BACKGROUND: Endo-β-1,4-galactanases are glycoside hydrolases (GH) from the GH53 family belonging to the largest clan of GHs, clan GH-A. GHs are ubiquitous and involved in a myriad of biological functions as well as being widely used industrially. Endo-β-1,4-galactanases, in particular hydrolyse galactan and arabinogalactan in pectin, a major component of the primary plant cell wall, with important functions in plant defence and application in the food and other industries. Here, we explore the family’s biological diversity by characterizing the first archaeal and hyperthermophilic GH53 galactanase, and utilize it as a scaffold for engineering enzymes with different product lengths. RESULTS: A galactanase gene was identified in the genome of the anaerobic hyperthermophilic archaeon Ignisphaera aggregans, and the isolated catalytic domain expressed and characterized (IaGal). IaGal presents the typical (βα)(8) barrel structure of clan GH-A enzymes, with catalytic carboxylates at the end of the 4th and 7th barrel strands. Its activity optimum of at least 95 °C and melting point over 100 °C indicate extreme thermostability, a very advantageous property for industrial applications. If enzyme depletion is reduced, so is the need for re-addition, and thus costs. The main stabilizing features of IaGal compared to other structurally characterized members are π–π and cation–π interactions. The length of the substrate binding site—and thus produced oligosaccharide products—is intermediate compared to previously characterized galactanases. Variants inspired by the structural diversity in the GH53 family were rationally designed to shorten or extend the substrate binding groove, in order to modulate product length. Subsite-deleted variants produced shorter products than IaGal, as do the fungal galactanases inspiring the design. IaGal variants engineered with a longer binding site produced a less expected degradation pattern, though still different from that of wild-type IaGal. All variants remained extremely stable. CONCLUSIONS: We have characterized in detail the most thermophilic endo-β-1,4-galactanase known to date and successfully engineered it to modify the degradation profile, while maintaining much of its desirable thermostability. This is an important achievement as oligosaccharide products length is an important property for industrial and natural GHs alike. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13068-021-02025-6

    Protonation State of an Important Histidine from High Resolution Structures of Lytic Polysaccharide Monooxygenases

    No full text
    Lytic Polysaccharide Monooxygenases (LPMOs) oxidatively cleave recalcitrant polysaccharides. The mechanism involves (i) reduction of the Cu, (ii) polysaccharide binding, (iii) binding of different oxygen species, and (iv) glycosidic bond cleavage. However, the complete mechanism is poorly understood and may vary across different families and even within the same family. Here, we have investigated the protonation state of a secondary co-ordination sphere histidine, conserved across AA9 family LPMOs that has previously been proposed to be a potential proton donor. Partial unrestrained refinement of newly obtained higher resolution data for two AA9 LPMOs and re-refinement of four additional data sets deposited in the PDB were carried out, where the His was refined without restraints, followed by measurements of the His ring geometrical parameters. This allowed reliable assignment of the protonation state, as also validated by following the same procedure for the His brace, for which the protonation state is predictable. The study shows that this histidine is generally singly protonated at the NÎľ2 atom, which is close to the oxygen species binding site. Our results indicate robustness of the method. In view of this and other emerging evidence, a role as proton donor during catalysis is unlikely for this His

    AA16 Oxidoreductases Boost Cellulose-Active AA9 Lytic Polysaccharide Monooxygenases from Myceliophthora thermophila

    No full text
    Copper-dependent lytic polysaccharide monooxygenases (LPMOs) classified in Auxiliary Activity (AA) families are considered indispensable as synergistic partners for cellulolytic enzymes to saccharify recalcitrant lignocellulosic plant biomass. In this study, we characterized two fungal oxidoreductases from the new AA16 family. We found that MtAA16A from Myceliophthora thermophila and AnAA16A from Aspergillus nidulans did not catalyze the oxidative cleavage of oligo- and polysaccharides. Indeed, the MtAA16A crystal structure showed a fairly LPMO-typical histidine brace active site, but the cellulose-acting LPMO-typical flat aromatic surface parallel to the histidine brace region was lacking. Further, we showed that both AA16 proteins are able to oxidize low-molecular-weight reductants to produce H2O2. The oxidase activity of the AA16s substantially boosted cellulose degradation by four AA9 LPMOs from M. thermophila (MtLPMO9s) but not by three AA9 LPMOs from Neurospora crassa (NcLPMO9s). The interplay with MtLPMO9s is explained by the H2O2-producing capability of the AA16s, which, in the presence of cellulose, allows the MtLPMO9s to optimally drive their peroxygenase activity. Replacement of MtAA16A by glucose oxidase (AnGOX) with the same H2O2-producing activity could only achieve less than 50% of the boosting effect achieved by MtAA16A, and earlier MtLPMO9B inactivation (6 h) was observed. To explain these results, we hypothesized that the delivery of AA16-produced H2O2to the MtLPMO9s is facilitated by protein-protein interaction. Our findings provide new insights into the functions of copper-dependent enzymes and contribute to a further understanding of the interplay of oxidative enzymes within fungal systems to degrade lignocellulose
    corecore