7 research outputs found

    Generation of medaka gene knockout models by target-selected mutagenesis

    Get PDF
    We have established a reverse genetics approach for the routine generation of medaka (Oryzias latipes) gene knockouts. A cryopreserved library of N-ethyl-N-nitrosourea (ENU) mutagenized fish was screened by high-throughput resequencing for induced point mutations. Nonsense and splice site mutations were retrieved for the Blm, Sirt1, Parkin and p53 genes and functional characterization of p53 mutants indicated a complete knockout of p53 function. The current cryopreserved resource is expected to contain knockouts for most medaka genes

    Efficient Target-Selected Mutagenesis in Zebrafish

    No full text
    One of the most powerful methods available to assign function to a gene is to inactivate or knockout the gene. Recently,we described the first target-selected knockout in zebrafish. Here,we report on the further improvements of this procedure,resulting in a highly efficient and easy method to do target-selected mutagenesis in zebrafish. A library of 4608 ENU-mutagenized F(1) animals was generated and kept as a living stock. The DNA of these animals was screened for mutations in 16 genes by use of CEL-I-mediated heteroduplex cleavage (TILLING) and subsequent resequencing. In total,255 mutations were identified,of which 14 resulted in a premature stop codon,7 in a splice donor/acceptor site mutation,and 119 in an amino acid change. By this method,we potentially knocked out 13 different genes in a few months time. Furthermore,we show that TILLING can be used to detect the full spectrum of ENU-induced mutations in a vertebrate genome with the presence of many naturally occurring polymorphisms

    Efficient target-selected mutagenesis in Caenorhabditis elegans: Toward a knockout for every gene

    Get PDF
    Reverse genetic or gene-driven knockout approaches have contributed significantly to the success of model organisms for fundamental and biomedical research. Although various technologies are available for C. elegans, none of them scale very well for genome-wide application. To address this, we implemented a target-selected knockout approach that is based on random chemical mutagenesis and detection of single nucleotide mutations in genes of interest using high-throughput resequencing. A clonal library of 6144 EMS-mutagenized worms was established and screened, resulting in the identification of 1044 induced mutations in 109 Mbp, which translates into an average spacing between exonic mutations in the library of only 17 bp. We covered 25% of the open reading frames of 32 genes and identified one or more inactivating mutations (nonsense or splice site) in 84% of them. Extrapolation of our results indicates that nonsense mutations for >90% of all C. elegans genes are present in the library. To identify all of these mutations, one only needs to inspect those positions that—given the known specificity of the mutagen—can result in the introduction of a stop codon. We define these positions as nonsense introducing mutations (NIMs). The genome-wide collection of possible NIMs can be calculated for any organism with a sequenced genome and reduces the screening complexity by 200- to 2000-fold, depending on the organism and mutagen. For EMS-mutagenized C. elegans, there are only ∼500,000 NIMs. We show that a NIM genotyping approach employing high-density microarrays can, in principle, be used for the genome-wide identification of C. elegans knockouts
    corecore