9 research outputs found
Dielectric and Energy Storage Properties of Ba(1−x)CaxZryTi(1−y)O3 (BCZT): A Review
The Ba(1−x)CaxZryTi(1−y)O3 (BCZT), a lead-free ceramic material, has attracted the scientific community since 2009 due to its large piezoelectric coefficient and resulting high dielectric permittivity. This perovskite material is a characteristic dielectric material for the pulsed power capacitors industry currently, which in turn leads to devices for effective storage and supply of electric energy. After this remarkable achievement in the area of lead-free piezoelectric ceramics, the researchers are exploring both the bulk as well as thin films of this perovskite material. It is observed that the thin film of this materials have outstandingly high power densities and high energy densities which is suitable for electrochemical supercapacitor applications. From a functional materials point of view this material has also gained attention in multiferroic composite material as the ferroelectric constituent of these composites and has provided extraordinary electric properties. This article presents a review on the relevant scientific advancements that have been made by using the BCZT materials for electric energy storage applications by optimizing its dielectric properties. The article starts with a BCZT introduction and discussion of the need of this material for high energy density capacitors, followed by different synthesis techniques and the effect on dielectric properties of doping different materials in BCZT. The advantages of thin film BCZT material over bulk counterparts are also discussed and its use as one of the constituents of mutiferroic composites is also presented. Finally, it summarizes the future prospects of this material followed by the conclusions
Optical and Electrical Properties of Al<sub>x</sub>Ga<sub>1−x</sub>N/GaN Epilayers Modulated by Aluminum Content
AlGaN-based LEDs are promising for many applications in deep ultraviolet fields, especially for water-purification projects, air sterilization, fluorescence sensing, etc. However, in order to realize these potentials, it is critical to understand the factors that influence the optical and electrical properties of the device. In this work, AlxGa1−xN (x = 0.24, 0.34, 0.47) epilayers grown on c-plane patterned sapphire substrate with GaN template by the metal organic chemical vapor deposition (MOCVD). It is demonstrated that the increase of the aluminum content leads to the deterioration of the surface morphology and crystal quality of the AlGaN epitaxial layer. The dislocation densities of AlxGa1−xN epilayers were determined from symmetric and asymmetric planes of the ω-scan rocking curve and the minimum value is 1.01 × 109 cm−2. The (101¯5) plane reciprocal space mapping was employed to measure the in-plane strain of the AlxGa1−xN layers grown on GaN. The surface barrier heights of the AlxGa1−xN samples derived from XPS are 1.57, 1.65, and 1.75 eV, respectively. The results of the bandgap obtained by PL spectroscopy are in good accordance with those of XRD. The Hall mobility and sheet electron concentration of the samples are successfully determined by preparing simple indium sphere electrodes
Energy Storage and Electrocaloric Cooling Performance of Advanced Dielectrics
Dielectric capacitors are widely used in pulse power systems, electric vehicles, aerospace, and defense technology as they are crucial for electronic components. Compact, lightweight, and diversified designs of electronic components are prerequisites for dielectric capacitors. Additionally, wide temperature stability and high energy storage density are equally important for dielectric materials. Ferroelectric materials, as special (spontaneously polarized) dielectric materials, show great potential in the field of pulse power capacitors having high dielectric breakdown strength, high polarization, low-temperature dependence and high energy storage density. The first part of this review briefly introduces dielectric materials and their energy storage performance. The second part elaborates performance characteristics of various ferroelectric materials in energy storage and refrigeration based on electrocaloric effect and briefly shed light on advantages and disadvantages of various common ferroelectric materials. Especially, we summarize the polarization effects of underlying substrates (such as GaN and Si) on the performance characteristics of ferroelectric materials. Finally, the review will be concluded with an outlook, discussing current challenges in the field of dielectric materials and prospective opportunities to assess their future progress
Energy Storage and Electrocaloric Cooling Performance of Advanced Dielectrics
Dielectric capacitors are widely used in pulse power systems, electric vehicles, aerospace, and defense technology as they are crucial for electronic components. Compact, lightweight, and diversified designs of electronic components are prerequisites for dielectric capacitors. Additionally, wide temperature stability and high energy storage density are equally important for dielectric materials. Ferroelectric materials, as special (spontaneously polarized) dielectric materials, show great potential in the field of pulse power capacitors having high dielectric breakdown strength, high polarization, low-temperature dependence and high energy storage density. The first part of this review briefly introduces dielectric materials and their energy storage performance. The second part elaborates performance characteristics of various ferroelectric materials in energy storage and refrigeration based on electrocaloric effect and briefly shed light on advantages and disadvantages of various common ferroelectric materials. Especially, we summarize the polarization effects of underlying substrates (such as GaN and Si) on the performance characteristics of ferroelectric materials. Finally, the review will be concluded with an outlook, discussing current challenges in the field of dielectric materials and prospective opportunities to assess their future progress
High Quality Growth of Cobalt Doped GaN Nanowires with Enhanced Ferromagnetic and Optical Response
Group III–V semiconductors with direct band gaps have become crucial for optoelectronic and microelectronic applications. Exploring these materials for spintronic applications is an important direction for many research groups. In this study, pure and cobalt doped GaN nanowires were grown on the Si substrate by the chemical vapor deposition (CVD) method. Sophisticated characterization techniques such as X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), Transmission Electron Microscopy (TEM), High-Resolution Transmission Electron Microscopy (HRTEM) and photoluminescence (PL) were used to characterize the structure, morphology, composition and optical properties of the nanowires. The doped nanowires have diameters ranging from 60–200 nm and lengths were found to be in microns. By optimizing the synthesis process, pure, smooth, single crystalline and highly dense nanowires have been grown on the Si substrate which possess better magnetic and optical properties. No any secondary phases were observed even with 8% cobalt doping. The magnetic properties of cobalt doped GaN showed a ferromagnetic response at room temperature. The value of saturation magnetization is found to be increased with increasing doping concentration and magnetic saturation was found to be 792.4 µemu for 8% cobalt doping. It was also depicted that the Co atoms are substituted at Ga sites in the GaN lattice. Furthermore N vacancies are also observed in the Co-doped GaN nanowires which was confirmed by the PL graph exhibiting nitrogen vacancy defects and strain related peaks at 455 nm (blue emission). PL and magnetic properties show their potential applications in spintronics
Study of Defects and Nano-patterned Substrate Regulation Mechanism in AlN Epilayers
The high crystal quality and low dislocation densities of aluminum nitride (AlN) grown on flat and nano-patterned sapphire substrate that are synthesized by the metal-organic chemical vapor deposition (MOCVD) method are essential for the realization of high-efficiency deep ultraviolet light-emitting diodes. The micro-strains of 0.18 × 10−3 cm−2 for flat substrate AlN and 0.11 × 10−3 cm−2 for nano-patterned substrate AlN are obtained by X-ray diffractometer (XRD). The screw and edge dislocation densities of samples are determined by XRD and transmission electron microscope (TEM), and the results indicate that the nano-patterned substrates are effective in reducing the threading dislocation density. The mechanism of the variation of the threading dislocation in AlN films grown on flat and nano-patterned substrates is investigated comparatively. The etch pit density (EPD) determined by preferential chemical etching is about 1.04 × 108 cm−2 for AlN grown on a nano-patterned substrate, which is slightly smaller than the results obtained by XRD and TEM investigation. Three types of etch pits with different sizes are all revealed on the AlN surface using the hot KOH etching method
Synergistic effect of nanostructured CdO/Ag3PO4 composite for excellent electrochemical and photocatalytic applications
In this study, nanostructured cadmium oxide and silver phosphate (CdO/Ag3PO4) nanocomposites are synthesized and studied for their electrochemical properties as well as photocatalytic potential of these composites is also investigated. The specific capacitance of pristine CdO is found to be 416.52 F/g and the enhanced capacitance up to 1012.06 F/g is obtained for the composite material with weight ratio of 80/20 for CdO/Ag3PO4 nanocomposite. The Galvanic charge–discharge (GCD) study highlights the excellent charging and discharging performance and we conclude that our material is highly stable during the 5000 cycles so could be an appealing candidate for commercial devices. The photocatalysis study is used for the degradation of methyl blue dye. The sample with weight ratio 80/20 has the best photocatalytic activity and degraded the 99.9% of the dye in 120 min. Experimental results suggest that CdO/Ag3PO4 has an outstanding potential for use in energy storage devices as an electrode material for supercapacitors and simultaneously could also be a potential candidate for waste water treatment technologies as compared to pristine counterparts