18 research outputs found
Periodic orbit effects on conductance peak heights in a chaotic quantum dot
We study the effects of short-time classical dynamics on the distribution of
Coulomb blockade peak heights in a chaotic quantum dot. The location of one or
both leads relative to the short unstable orbits, as well as relative to the
symmetry lines, can have large effects on the moments and on the head and tail
of the conductance distribution. We study these effects analytically as a
function of the stability exponent of the orbits involved, and also numerically
using the stadium billiard as a model. The predicted behavior is robust,
depending only on the short-time behavior of the many-body quantum system, and
consequently insensitive to moderate-sized perturbations.Comment: 14 pages, including 6 figure
Adiabatic spin pumping through a quantum dot with a single orbital level
We investigate an adiabatic spin pumping through a quantum dot with a single
orbital energy level under the Zeeman effect. Electron pumping is produced by
two periodic time dependent parameters, a magnetic field and a difference of
the dot-lead coupling between the left and right barriers of the dot. The
maximum charge transfer per cycle is found to be , the unit charge in the
absence of a localized moment in the dot. Pumped charge and spin are different,
and spin pumping is possible without charge pumping in a certain situation.
They are tunable by changing the minimum and maximum value of the magnetic
field.Comment: RevTeX4, 5 pages, 3 figure
Quantum Pumping and Quantized Magnetoresistance in a Hall Bar
We show how a dc current can be generated in a Hall bar without applying a
bias voltage. The Hall resistance that corresponds to this pumped current
is quantized, just as in the usual integer quantum Hall effect (IQHE). In
contrast with the IQHE, however, the longitudinal resistance does not
vanish on the plateaus, but equals the Hall resistance. We propose an
experimental geometry to measure the pumped current and verify the predicted
behavior of and .Comment: RevTeX, 3 figure
Quantum spin pumping with adiabatically modulated magnetic barrier's
A quantum pump device involving magnetic barriers produced by the deposition
of ferro magnetic stripes on hetero-structure's is investigated. The device for
dc- transport does not provide spin-polarized currents, but in the adiabatic
regime, when one modulates two independent parameters of this device, spin-up
and spin-down electrons are driven in opposite directions, with the net result
being that a finite net spin current is transported with negligible charge
current. We also analyze our proposed device for inelastic-scattering and
spin-orbit scattering. Strong spin-orbit scattering and more so inelastic
scattering have a somewhat detrimental effect on spin/charge ratio especially
in the strong pumping regime. Further we show our pump to be almost noiseless,
implying an optimal quantum spin pump.Comment: 14 pages, 9 figures. Manuscript revised with additional new material
on spin-orbit scattering and inelastic scattering. Further new additions on
noiseless pumping and analytical results with distinction between weak and
strong pumping regimes. Accepted for publication in Physical Review
Universal Correlations of Coulomb Blockade Conductance Peaks and the Rotation Scaling in Quantum Dots
We show that the parametric correlations of the conductance peak amplitudes
of a chaotic or weakly disordered quantum dot in the Coulomb blockade regime
become universal upon an appropriate scaling of the parameter. We compute the
universal forms of this correlator for both cases of conserved and broken time
reversal symmetry. For a symmetric dot the correlator is independent of the
details in each lead such as the number of channels and their correlation. We
derive a new scaling, which we call the rotation scaling, that can be computed
directly from the dot's eigenfunction rotation rate or alternatively from the
conductance peak heights, and therefore does not require knowledge of the
spectrum of the dot. The relation of the rotation scaling to the level velocity
scaling is discussed. The exact analytic form of the conductance peak
correlator is derived at short distances. We also calculate the universal
distributions of the average level width velocity for various values of the
scaled parameter. The universality is illustrated in an Anderson model of a
disordered dot.Comment: 35 pages, RevTex, 6 Postscript figure
Interplay between edge states and simple bulk defects in graphene nanoribbons
We study the interplay between the edge states and a single impurity in a
zigzag graphene nanoribbon. We use tight-binding exact diagonalization
techniques, as well as density functional theory calculations to obtain the
eigenvalue spectrum, the eigenfunctions, as well the dependence of the local
density of states (LDOS) on energy and position. We note that roughly half of
the unperturbed eigenstates in the spectrum of the finite-size ribbon hybridize
with the impurity state, and the corresponding eigenvalues are shifted with
respect to their unperturbed values. The maximum shift and hybridization occur
for a state whose energy is inverse proportional to the impurity potential;
this energy is that of the impurity peak in the DOS spectrum. We find that the
interference between the impurity and the edge gives rise to peculiar
modifications of the LDOS of the nanoribbon, in particular to oscillations of
the edge LDOS. These effects depend on the size of the system, and decay with
the distance between the edge and the impurity.Comment: 10 pages, 15 figures, revtex
Pumping spin with electrical fields
Spin currents can be obtained through adiabatic pumping by means of
electrical gating only. This is possible by making use of the tunability of the
Rashba spin-orbit coupling in semiconductor heterostructures. We demonstrate
the principles of this effect by considering a single-channel wire with a
constriction. We also consider realistic structures, consisting of several open
channels where subband spin-mixing and disorder are present, and we confirm our
predictions. Two different ways to detect the spin-pumping effect, either using
ferromagnetic leads or applying a magnetic field, are discussed.Comment: 5 pages, 2 figures; minor changes, typos correcte
Parametric quantum spin pump
We investigate a non-adiabatic parametric quantum pump consists of a
nonmagnetic scattering region connected by two ferromagnetic leads. The
presence of ferromagnetic leads allows electrons with different spins to
experience different potential landscape. Using this effect we propose a
quantum spin pump that drives spin-up electrons to flow in one direction and
spin-down electrons to flow in opposite direction. As a result, the spin pump
can deliver a spin current with vanishing charge current
Correlated Random Hopping Disorder In Graphene At High Magnetic Fields: Landau Level Broadening And Localization Properties
We study the density of states and localization properties of the lowest Landau levels of graphene at high magnetic fields. We focus on the effects caused by correlated long-range hopping disorder, which, in exfoliated graphene, is induced by static ripples. We find that the broadening of the lowest Landau level shrinks exponentially with increasing disorder correlation length. At the same time, the broadening grows linearly with magnetic field and with disorder amplitudes. The lowest Landau level peak shows a robust splitting, the origin of which we identify as the breaking of the sublattice (valley) degeneracy. © 2011 American Physical Society