18 research outputs found

    Periodic orbit effects on conductance peak heights in a chaotic quantum dot

    Full text link
    We study the effects of short-time classical dynamics on the distribution of Coulomb blockade peak heights in a chaotic quantum dot. The location of one or both leads relative to the short unstable orbits, as well as relative to the symmetry lines, can have large effects on the moments and on the head and tail of the conductance distribution. We study these effects analytically as a function of the stability exponent of the orbits involved, and also numerically using the stadium billiard as a model. The predicted behavior is robust, depending only on the short-time behavior of the many-body quantum system, and consequently insensitive to moderate-sized perturbations.Comment: 14 pages, including 6 figure

    Adiabatic spin pumping through a quantum dot with a single orbital level

    Full text link
    We investigate an adiabatic spin pumping through a quantum dot with a single orbital energy level under the Zeeman effect. Electron pumping is produced by two periodic time dependent parameters, a magnetic field and a difference of the dot-lead coupling between the left and right barriers of the dot. The maximum charge transfer per cycle is found to be ee, the unit charge in the absence of a localized moment in the dot. Pumped charge and spin are different, and spin pumping is possible without charge pumping in a certain situation. They are tunable by changing the minimum and maximum value of the magnetic field.Comment: RevTeX4, 5 pages, 3 figure

    Quantum Pumping and Quantized Magnetoresistance in a Hall Bar

    Full text link
    We show how a dc current can be generated in a Hall bar without applying a bias voltage. The Hall resistance RHR_H that corresponds to this pumped current is quantized, just as in the usual integer quantum Hall effect (IQHE). In contrast with the IQHE, however, the longitudinal resistance RxxR_{xx} does not vanish on the plateaus, but equals the Hall resistance. We propose an experimental geometry to measure the pumped current and verify the predicted behavior of RHR_H and RxxR_{xx}.Comment: RevTeX, 3 figure

    Quantum spin pumping with adiabatically modulated magnetic barrier's

    Full text link
    A quantum pump device involving magnetic barriers produced by the deposition of ferro magnetic stripes on hetero-structure's is investigated. The device for dc- transport does not provide spin-polarized currents, but in the adiabatic regime, when one modulates two independent parameters of this device, spin-up and spin-down electrons are driven in opposite directions, with the net result being that a finite net spin current is transported with negligible charge current. We also analyze our proposed device for inelastic-scattering and spin-orbit scattering. Strong spin-orbit scattering and more so inelastic scattering have a somewhat detrimental effect on spin/charge ratio especially in the strong pumping regime. Further we show our pump to be almost noiseless, implying an optimal quantum spin pump.Comment: 14 pages, 9 figures. Manuscript revised with additional new material on spin-orbit scattering and inelastic scattering. Further new additions on noiseless pumping and analytical results with distinction between weak and strong pumping regimes. Accepted for publication in Physical Review

    Universal Correlations of Coulomb Blockade Conductance Peaks and the Rotation Scaling in Quantum Dots

    Full text link
    We show that the parametric correlations of the conductance peak amplitudes of a chaotic or weakly disordered quantum dot in the Coulomb blockade regime become universal upon an appropriate scaling of the parameter. We compute the universal forms of this correlator for both cases of conserved and broken time reversal symmetry. For a symmetric dot the correlator is independent of the details in each lead such as the number of channels and their correlation. We derive a new scaling, which we call the rotation scaling, that can be computed directly from the dot's eigenfunction rotation rate or alternatively from the conductance peak heights, and therefore does not require knowledge of the spectrum of the dot. The relation of the rotation scaling to the level velocity scaling is discussed. The exact analytic form of the conductance peak correlator is derived at short distances. We also calculate the universal distributions of the average level width velocity for various values of the scaled parameter. The universality is illustrated in an Anderson model of a disordered dot.Comment: 35 pages, RevTex, 6 Postscript figure

    Interplay between edge states and simple bulk defects in graphene nanoribbons

    Full text link
    We study the interplay between the edge states and a single impurity in a zigzag graphene nanoribbon. We use tight-binding exact diagonalization techniques, as well as density functional theory calculations to obtain the eigenvalue spectrum, the eigenfunctions, as well the dependence of the local density of states (LDOS) on energy and position. We note that roughly half of the unperturbed eigenstates in the spectrum of the finite-size ribbon hybridize with the impurity state, and the corresponding eigenvalues are shifted with respect to their unperturbed values. The maximum shift and hybridization occur for a state whose energy is inverse proportional to the impurity potential; this energy is that of the impurity peak in the DOS spectrum. We find that the interference between the impurity and the edge gives rise to peculiar modifications of the LDOS of the nanoribbon, in particular to oscillations of the edge LDOS. These effects depend on the size of the system, and decay with the distance between the edge and the impurity.Comment: 10 pages, 15 figures, revtex

    Pumping spin with electrical fields

    Full text link
    Spin currents can be obtained through adiabatic pumping by means of electrical gating only. This is possible by making use of the tunability of the Rashba spin-orbit coupling in semiconductor heterostructures. We demonstrate the principles of this effect by considering a single-channel wire with a constriction. We also consider realistic structures, consisting of several open channels where subband spin-mixing and disorder are present, and we confirm our predictions. Two different ways to detect the spin-pumping effect, either using ferromagnetic leads or applying a magnetic field, are discussed.Comment: 5 pages, 2 figures; minor changes, typos correcte

    Parametric quantum spin pump

    Get PDF
    We investigate a non-adiabatic parametric quantum pump consists of a nonmagnetic scattering region connected by two ferromagnetic leads. The presence of ferromagnetic leads allows electrons with different spins to experience different potential landscape. Using this effect we propose a quantum spin pump that drives spin-up electrons to flow in one direction and spin-down electrons to flow in opposite direction. As a result, the spin pump can deliver a spin current with vanishing charge current

    Correlated Random Hopping Disorder In Graphene At High Magnetic Fields: Landau Level Broadening And Localization Properties

    Get PDF
    We study the density of states and localization properties of the lowest Landau levels of graphene at high magnetic fields. We focus on the effects caused by correlated long-range hopping disorder, which, in exfoliated graphene, is induced by static ripples. We find that the broadening of the lowest Landau level shrinks exponentially with increasing disorder correlation length. At the same time, the broadening grows linearly with magnetic field and with disorder amplitudes. The lowest Landau level peak shows a robust splitting, the origin of which we identify as the breaking of the sublattice (valley) degeneracy. © 2011 American Physical Society
    corecore