211 research outputs found

    Semi-Classical Isotropization of the Universe during a de Sitter phase

    Full text link
    Semi-classical states for the Wheeler-DeWitt equation of a Bianchi type I model in the presence of a scalar field are analyzed. It is outlined how this scheme can effectively describe more general situations, where the curvature of the Bianchi type IX model and a proper potential term for the scalar field are present. The introduction of a cosmological constant term accounts for the quasi-isotropization mechanism which bridges the proposed framework with a late isotropic phase. This result makes the semi-classical Bianchi I model a plausible scenario for the Universe pre-inflationary phase.Comment: 6 pages, accepted for publication in Phys. Rev.

    New measurements of Ωm\Omega_m from gamma-ray bursts

    Get PDF
    Context: Data from cosmic microwave background radiation (CMB), baryon acoustic oscillations (BAO), and supernovae Ia (SNe-Ia) support a constant dark energy equation of state with w0∼−1w_0 \sim -1. Measuring the evolution of ww along the redshift is one of the most demanding challenges for observational cosmology. Aims: We discuss the existence of a close relation for GRBs, named Combo-relation, based on characteristic parameters of GRB phenomenology such as the prompt intrinsic peak energy Ep,iE_{p,i}, the X-ray afterglow, the initial luminosity of the shallow phase L0L_0, the rest-frame duration τ\tau of the shallow phase, and the index of the late power-law decay αX\alpha_X. We use it to measure Ωm\Omega_m and the evolution of the dark energy equation of state. We also propose a new calibration method for the same relation, which reduces the dependence on SNe Ia systematics. Methods: We have selected a sample of GRBs with 1) a measured redshift zz; 2) a determined intrinsic prompt peak energy Ep,iE_{p,i}, and 3) a good coverage (0.3-10) keV afterglow light curves. The fitting technique of the rest.frame (0.3-10) keV luminosity light curves represents the core of the Combo-relation. We separate the early steep decay, considered a part of the prompt emission, from the X-ray afterglow additional component. Data with the largest positive residual, identified as flares, are automatically eliminated until the p-value of the fit becomes greater than 0.3. Results: We strongly minimize the dependency of the Combo-GRB calibration on SNe Ia. We also measure a small extra-Poissonian scatter of the Combo-relation, which allows us to infer from GRBs alone ΩM=0.29−0.15+0.23\Omega_M =0.29^{+0.23}_{-0.15} (1σ\sigma) for the Λ\LambdaCDM cosmological model, and ΩM=0.40−0.16+0.22\Omega_M =0.40^{+0.22}_{-0.16}, w0=−1.43−0.66+0.78w_0 = -1.43^{+0.78}_{-0.66} for the flat-Universe variable equation of state case.Comment: 10 pages, 9 figures, 3 tables. Accepted for publication in A&A. Truncated abstract tex

    Fundamental Frequencies in the Schwarzschild Spacetime

    Full text link
    We consider the Keplerian, radial and vertical fundamental frequencies in the Schwarzschild spacetime to study the so-called kilohertz quasi-periodic oscillations from low-mass X-ray binary systems. We show that, within the Relativistic Precession Model, the interpretation of observed kilohertz quasi-periodic oscillations in terms of the fundamental frequencies of test particles in the Schwarzschild spacetime, allows one to infer the total mass MM of the central object, the internal RinR_{in} and external RexR_{ex} radii of accretion disks, and innermost stable circular orbits rISCOr_{ISCO} for test particles in a low-mass X-ray binary system. By constructing the relation between the upper and lower frequencies and exploiting the quasi-periodic oscillation data of the Z and Atoll sources we perform the non-linear model fit analysis and estimate the mass of the central object. Knowing the value of the mass we calculate the internal RinR_{in} and external RexR_{ex} radii of accretion disks and show that they are larger than rISCOr_{ISCO}, what was expected.Comment: 7 pages, 6 figures, 1 tabl
    • …
    corecore