7,562 research outputs found

    Toward Guaranteed Illumination Models for Non-Convex Objects

    Full text link
    Illumination variation remains a central challenge in object detection and recognition. Existing analyses of illumination variation typically pertain to convex, Lambertian objects, and guarantee quality of approximation in an average case sense. We show that it is possible to build V(vertex)-description convex cone models with worst-case performance guarantees, for non-convex Lambertian objects. Namely, a natural verification test based on the angle to the constructed cone guarantees to accept any image which is sufficiently well-approximated by an image of the object under some admissible lighting condition, and guarantees to reject any image that does not have a sufficiently good approximation. The cone models are generated by sampling point illuminations with sufficient density, which follows from a new perturbation bound for point images in the Lambertian model. As the number of point images required for guaranteed verification may be large, we introduce a new formulation for cone preserving dimensionality reduction, which leverages tools from sparse and low-rank decomposition to reduce the complexity, while controlling the approximation error with respect to the original cone

    Macroscopical Entangled Coherent State Generator in V configuration atom system

    Full text link
    In this paper, we propose a scheme to produce pure and macroscopical entangled coherent state. When a three-level ''V'' configuration atom interacts with a doubly reasonant cavity, under the strong classical driven condition, entangled coherent state can be generated from vacuum fields. An analytical solution for this system under the presence of cavity losses is also given

    Minimal sets determining universal and phase-covariant quantum cloning

    Full text link
    We study the minimal input sets which can determine completely the universal and the phase-covariant quantum cloning machines. We find that the universal quantum cloning machine, which can copy arbitrary input qubit equally well, however can be determined completely by only four input states located at the four vertices of a tetrahedron. The phase-covariant quantum cloning machine, which can copy all qubits located on the equator of the Bloch sphere, can be determined by three equatorial qubits with equal angular distance. These results sharpen further the well-known results that BB84 states and six-states used in quantum cryptography can determine completely the phase-covariant and universal quantum cloning machines. This concludes the study of the power of universal and phase-covariant quantum cloning, i.e., from minimal input sets necessarily to full input sets by definition. This can simplify dramatically the testing of whether the quantum clone machines are successful or not, we only need to check that the minimal input sets can be cloned optimally.Comment: 7 pages, 4 figure

    Identity-based data storage in cloud computing

    Get PDF
    Identity-based proxy re-encryption schemes have been proposed to shift the burden of managing numerous files from the owner to a proxy server. Nevertheless, the existing solutions suffer from several drawbacks. First, the access permission is determined by the central authority, which makes the scheme impractical. Second, they are insecure against collusion attacks. Finally, only queries from the same domain (intra-domain) are considered. We note that one of the main applications of identity-based proxy re-encryption schemes is in the cloud computing scenario. Nevertheless, in this scenario, users in different domains can share files with each other. Therefore, the existing solutions do not actually solve the motivating scenario, when the scheme is applicable for cloud computing. Hence, it remains an interesting and challenging research problem to design an identity-based data storage scheme which is secure against collusion attacks and supports intra-domain and inter-domain queries. In this paper, we propose an identity-based data storage scheme where both queries from the intra-domain and inter-domain are considered and collusion attacks can be resisted. Furthermore, the access permission can be determined by the owner independently. © 2012 Elsevier B.V. All rights reserved

    Transition of stoichiometricSr2VO3FeAs to a superconducting state at 37.2 K

    Full text link
    The superconductor Sr4V2O6Fe2As2 with transition temperature at 37.2 K has been fabricated. It has a layered structure with the space group of p4/nmm, and with the lattice constants a = 3.9296Aand c = 15.6732A. The observed large diamagnetization signal and zero-resistance demonstrated the bulk superconductivity. The broadening of resistive transition was measured under different magnetic fields leading to the discovery of a rather high upper critical field. The results also suggest a large vortex liquid region which reflects high anisotropy of the system. The Hall effect measurements revealed dominantly electron-like charge carriers in this material. The superconductivity in the present system may be induced by oxygen deficiency or the multiple valence states of vanadium.Comment: 5 pages, 4 figure

    Superconductivity at 15.6 K in Calcium-doped Tb_{1-x}Ca_xFeAsO: the structure requirement for achieving superconductivity in the hole-doped 1111 phase

    Full text link
    Superconductivity at about 15.6 K was achieved in Tb_{1-x}Ca_xFeAsO by partially substituting Tb^{3+} with Ca^{2+} in the nominal doping region x = 0.40 \sim 0.50. A detailed investigation was carried out in a typical sample with doping level of x = 0.44. The upper critical field of this sample was estimated to be 77 Tesla from the magnetic field dependent resistivity data. The domination of hole-like charge carriers in the low-temperature region was confirmed by Hall effect measurements. The comparison between the calcium-doped sample Pr_{1-x}Ca_xFeAsO (non-superconductive) and the Strontium-doped sample Pr_{1-x}Sr_xFeAsO (superconductive) suggests that a lager ion radius of the doped alkaline-earth element compared with that of the rare-earth element may be a necessary requirement for achieving superconductivity in the hole-doped 1111 phase.Comment: 7 pages, 7 figure
    corecore