77 research outputs found

    The Rad50 coiled-coil domain is indispensable for Mre11 complex functions

    Get PDF
    The Mre11 complex (Mre11, Rad50 and Xrs2 in Saccharomyces cerevisiae) influences diverse functions in the DNA damage response. The complex comprises the globular DNA-binding domain and the Rad50 hook domain, which are linked by a long and extended Rad50 coiled-coil domain. In this study, we constructed rad50 alleles encoding truncations of the coiled-coil domain to determine which Mre11 complex functions required the full length of the coils. These mutations abolished telomere maintenance and meiotic double-strand break (DSB) formation, and severely impaired homologous recombination, indicating a requirement for long-range action. Nonhomologous end joining, which is probably mediated by the globular domain of the Mre11 complex, was also severely impaired by alteration of the coiled-coil and hook domains, providing the first evidence of their influence on this process. These data show that functions of Mre11 complex are integrated by the coiled coils of Rad50.Swiss National Science Foundation and Eugen and Elisabeth Schellenberg Foundation GM56888, PBZH33-112756, PA0033-117484Ministerio de Ciencia e Innovación BFU2006-05260, 2010 CSD2007-01

    MAP17 (PDZK1IP1) and pH2AX are potential predictive biomarkers for rectal cancer treatment efficacy

    Get PDF
    Rectal cancer represents approximately 10% of cancers worldwide. Preoperative chemoradiotherapy increases complete pathologic response and local control, although it offers a poor advantage in survivorship and sphincter saving compared with that of radiotherapy alone. After preoperative chemoradiotherapy, approximately 20% of patients with rectal cancer achieve a pathologic complete response to the removed surgical specimen; this response may be related to a better prognosis and an improvement in disease-free survival. However, better biomarkers to predict response and new targets are needed to stratify patients and obtain better response rates. MAP17 (PDZK1IP1) is a small, 17 kDa non-glycosylated membrane protein located in the plasma membrane and Golgi apparatus and is overexpressed in a wide variety of human carcinomas. MAP17 has been proposed as a predictive biomarker for reactive oxygen species, ROS, inducing treatments in cervical tumors or laryngeal carcinoma. Due to the increase in ROS, MAP17 is also associated with the marker of DNA damage, phosphoH2AX (pH2AX). In the present manuscript, we examined the values of MAP17 and pH2AX as surrogate biomarkers of the response in rectal tumors. MAP17 expression after preoperative chemoradiotherapy is able to predict the response to chemoradiotherapy, similar to the increase in pH2AX. Furthermore, we explored whether we can identify molecular targeted therapies that could help improve the response of these tumors to radiotherapy. In this sense, we found that the inhibition of DNA damage with olaparib increased the response to radio- and chemotherapy, specifically in tumors with high levels of pH2AX and MAP17.Spanish Ministry of Economy and Competitivity, Plan Estatal de I+D+I 2013–2016, ISCIII (Fis: PI15/00045) and CIBER de Cáncer (CB16/12/00275)co-funded by FEDER from Regional Development European Funds (European Union), Consejería de Ciencia e Innovación (CTS-1848)Consejería de Salud of the Junta de Andalucía (PI-0096–2014)

    Competing roles of DNA end resection and non-homologous end joining functions in the repair of replication-born double-strand breaks by sister-chromatid recombination

    Get PDF
    While regulating the choice between homologous recombination and non-homologous end joining (NHEJ) as mechanisms of double-strand break (DSB) repair is exerted at several steps, the key step is DNA end resection, which in Saccharomyces cerevisiae is controlled by the MRX complex and the Sgs1 DNA helicase or the Sae2 and Exo1 nucleases. To assay the role of DNA resection in sister-chromatid recombination (SCR) as the major repair mechanism of spontaneous DSBs, we used a circular minichromosome system for the repair of replication-born DSBs by SCR in yeast. We provide evidence that MRX, particularly its Mre11 nuclease activity, and Sae2 are required for SCR-mediated repair of DSBs. The phenotype of nuclease-deficient MRX mutants is suppressed by ablation of Yku70 or overexpression of Exo1, suggesting a competition between NHEJ and resection factors for DNA ends arising during replication. In addition, we observe partially redundant roles for Sgs1 and Exo1 in SCR, with a more prominent role for Sgs1. Using human U2OS cells, we also show that the competitive nature of these reactions is likely evolutionarily conserved. These results further our understanding of the role of DNA resection in repair of replication-born DSBs revealing unanticipated differences between these events and repair of enzymatically induced DSBs.Ministerio de Ciencia e Innovación BFU2006-05260, BFU2010-16372, CSD2007-015, SAF2010-21017, SAF2010-14877Junta de Andalucía BIO102, CVI4567European Community’s Seventh Framework Programme HEALTH-F2-2010-259893Cancer Research UK C6/A11224, C6946/A14492Wellcome Trust 09209

    143 PRINCIPAL COMPONENT CLUSTERING OF FRONTAL PLANE KNEE KINEMATICS

    Get PDF
    Replication forks stall at different DNA obstacles such as those originated by transcription. Fork stalling can lead to DNA double-strand breaks (DSBs) that will be preferentially repaired by homologous recombination when the sister chromatid is available. The Rrm3 helicase is a replisome component that promotes replication upon fork stalling, accumulates at highly transcribed regions and prevents not only transcription-induced replication fork stalling but also transcription-associated hyper-recombination. This led us to explore the possible role of Rrm3 in the repair of DSBs when originating at the passage of the replication fork. Using a mini-HO system that induces mainly single-stranded DNA breaks, we show that rrm3Δ cells are defective in DSB repair. The defect is clearly seen in sister chromatid recombination, the major repair pathway of replication-born DSBs. Our results indicate that Rrm3 recruitment to replication-born DSBs is crucial for viability, uncovering a new role for Rrm3 in the repair of broken replication forks.This work was supported by grants from the Spanish Ministry of Economy and Innovation (BFU2013-42918), the European Union (FEDER), the European Research Council (ERC2014 AdG669898 TARLOOP), and the Junta de Andalucía (BIO1238). SMG was funded by a predoctoral training fellowship from the Spanish National Research Council (CSIC) and BGG by a postdoctoral grant from the Scientific Foundation of the Spanish Association Against Cancer (AECC). Funding for open access charge: Grants from the Spanish Ministry of Economy and Innovation (BFU2013-42918).Peer Reviewe

    New markers for human ovarian cancer that link platinum resistance to the cancer stem cell phenotype and define new therapeutic combinations and diagnostic tools

    Get PDF
    BACKGROUND: Ovarian cancer is the leading cause of gynecologic cancer-related death, due in part to a late diagnosis and a high rate of recurrence. Primary and acquired platinum resistance is related to a low response probability to subsequent lines of treatment and to a poor survival. Therefore, a comprehensive understanding of the mechanisms that drive platinum resistance is urgently needed. METHODS: We used bioinformatics analysis of public databases and RT-qPCR to quantitate the relative gene expression profiles of ovarian tumors. Many of the dysregulated genes were cancer stem cell (CSC) factors, and we analyzed its relation to therapeutic resistance in human primary tumors. We also performed clustering and in vitro analyses of therapy cytotoxicity in tumorspheres. RESULTS: Using bioinformatics analysis, we identified transcriptional targets that are common endpoints of genetic alterations linked to platinum resistance in ovarian tumors. Most of these genes are grouped into 4 main clusters related to the CSC phenotype, including the DNA damage, Notch and C-KIT/MAPK/MEK pathways. The relative expression of these genes, either alone or in combination, is related to prognosis and provide a connection between platinum resistance and the CSC phenotype. However, the expression of the CSC-related markers was heterogeneous in the resistant tumors, most likely because there were different CSC pools. Furthermore, our in vitro results showed that the inhibition of the CSC-related targets lying at the intersection of the DNA damage, Notch and C-KIT/MAPK/MEK pathways sensitize CSC-enriched tumorspheres to platinum therapies, suggesting a new option for the treatment of patients with platinum-resistant ovarian cancer. CONCLUSIONS: The current study presents a new approach to target the physiology of resistant ovarian tumor cells through the identification of core biomarkers. We hypothesize that the identified mutations confer platinum resistance by converging to activate a few pathways and to induce the expression of a few common, measurable and targetable essential genes. These pathways include the DNA damage, Notch and C-KIT/MAPK/MEK pathways. Finally, the combined inhibition of one of these pathways with platinum treatment increases the sensitivity of CSC-enriched tumorspheres to low doses of platinum, suggesting a new treatment for ovarian cancerSpanish Ministry of Education FPU12/01380Spanish Ministry of Economy and Competitivity, Plan Estatal de I + D + I 2013–2016Spanish Ministry of Science, Innovation and Universities (RTI2018–097455-B-I00)CIBER de Cáncer (CD16/12/00275)Spanish Consejería de Salud of the Junta de Andalucia (PI-0397-2017

    Distinct Roles of Mus81, Yen1, Slx1-Slx4, and Rad1 Nucleases in the Repair of Replication-Born Double-Strand Breaks by Sister Chromatid Exchange

    Get PDF
    Most spontaneous DNA double-strand breaks (DSBs) arise during replication and are repaired by homologous recombination (HR) with the sister chromatid. Many proteins participate in HR, but it is often difficult to determine their in vivo functions due to the existence of alternative pathways. Here we take advantage of an in vivo assay to assess repair of a specific replication-born DSB by sister chromatid recombination (SCR). We analyzed the functional relevance of four structure-selective endonucleases (SSEs), Yen1, Mus81-Mms4, Slx1-Slx4, and Rad1, on SCR in Saccharomyces cerevisiae. Physical and genetic analyses showed that ablation of any of these SSEs leads to a specific SCR decrease that is not observed in general HR. Our work suggests that Yen1, Mus81-Mms4, Slx4, and Rad1, but not Slx1, function independently in the cleavage of intercrossed DNA structures to reconsti-tute broken replication forks via HR with the sister chromatid. These unique effects, which have not been detected in other stud-ies unless double mutant combinations were used, indicate the formation of distinct alternatives for the repair of replication- born DSBs that require specific SSEs.Ministerio de Ciencia e Innovación FU2010-16372, CSD2007-015Junta de Andalucía BIO102 and CVI4567National Institutes of Health GM5801

    Coordinated downregulation of Spinophilin and the catalytic subunits of PP1, PPP1CA/B/C, contributes to a worse prognosis in lung cancer

    Get PDF
    The scaffold protein Spinophilin (Spinophilin, PPP1R9B) is one of the regulatory subunits of phosphatase-1 (PP1), directing it to distinct subcellular locations and targets. The loss of Spinophilin reduces PP1 targeting to pRb, thereby maintaining higher levels of phosphorylated pRb. Spinophilin is absent or reduced in approximately 40% of human lung tumors, correlating with the malignant grade. However, little is known about the relevance of the coordinated activity or presence of Spinophilin and its reported catalytic partners in the prognosis of lung cancer. In the present work, we show that the downregulation of Spinophilin, either by protein or mRNA, is related to a worse prognosis in lung tumors. This effect is more relevant in squamous cell carcinoma, SCC, than in adenocarcinoma. Downregulation of Spinophilin is related to a decrease in the levels of its partners PPP1CA/B/C, the catalytic subunits of PP1. A decrease in these subunits is also related to prognosis in SCC and, in combination with a decrease in Spinophilin, are markers of a poor prognosis in these tumors. The analysis of the genes that correlate to Spinophilin in lung tumors showed clear enrichment in ATP biosynthesis and protein degradation GO pathways. The analysis of the response to several common and pathway-related drugs indicates a direct correlation between the Spinophilin/PPP1Cs ratio and the response to oxaliplatin and bortezomib. This finding indicates that this ratio may be a good predictive biomarker for the activity of the drugs in these tumors with a poor prognosis.España, Mineco Plan Estatal de I+D+I 2013-2016España, ISCIII Fis: PI15/00045CIBER de Cáncer CB16/12/00275, CB16/12/00443, CB16/12/00442España, Junta de Andalucía, Consejeria de Ciencia e Innovacion CTS-1848España, Junta de Andalucía, Consejeria de Salud PI-0096-201

    PAI1 is a Marker of Bad Prognosis in Rectal Cancer but Predicts a Better Response to Treatment with PIM Inhibitor AZD1208

    Get PDF
    Colorectal cancer (CRC) is the third most common cancer worldwide. The standard treatment in locally advanced rectal cancer is preoperative radiation alone or in combination with chemotherapy, followed by adjuvant chemotherapy. Rectal cancer is highly lethal, with only 20% of patients showing a complete remission (by RECIST) after standard treatment, although they commonly show local or systemic relapse likely due to its late detection and high chemotherapy resistance, among other reasons. Here, we explored the role of PAI1 (Serpin E1) in rectal cancer through the analyses of public patient databases, our own cohort of locally advanced rectal cancer patients and a panel of CRC cell lines. We showed that PAI1 expression is upregulated in rectal tumors, which is associated with decreased overall survival and increased metastasis and invasion in advanced rectal tumors. Accordingly, PAI1 expression is correlated with the expression of (Epithelial-to-Mesenchymal Transition) EMT-associated genes and genes encoding drug targets, including the tyrosine kinases PDGFRb, PDGFRa and FYN, the serine/threonine kinase PIM1 and BRAF. In addition, we demonstrate that cells expressing PAI1 protein are more sensitive to the PIM inhibitor AZD1208, suggesting that PAI1 could be used to predict response to treatment with PIM inhibitors and to complement radiotherapy in rectal tumors.España Consejería de Salud of the Junta de Andalucía (PI-0397-2017)España , Consejeria of Economía, Conocimiento, Empresas y Universidad of the Junta de Andalucia (P18-RT-2501

    MAP17 (PDZKIP1) as a novel prognostic biomarker for laryngeal cancer

    Get PDF
    Larynx cancer organ preservation treatments with chemo and radiotherapy have substantially improved laryngoesophageal dysfunction-free survival. However, both of them lead to a high incidence of acute and chronic toxicities and a significant number of patients relapse. To date, there is no evidence available to establish the group of patients that may benefit from preservation approaches and clinical criteria such as primary tumor extension or pretreatment tracheotomy are not validated. MAP17 is a small non-glycosylated membrane protein overexpressed in carcinomas. The tumoral behavior induced by MAP17 is associated with reactive oxygen species production in which SGLT1 seems involved. In this study we found that the levels of MAP17 were related to clinical findings and survival in a cohort of 58 patients with larynx cancer. MAP17 expression is associated with overall survival (p < 0.001) and laryngoesophageal dysfunction-free survival (p=0.002). Locoregional control in patients with high MAP17 showed better outcomes than those with low MAP17 (p=0.016). Besides, a positive correlation was observed between MAP17 expression and SGLT (p=0.022) and the combination of high levels of MAP17/SGLT also led to an increased overall survival (p=0,028). These findings suggest that MAP17, alone or in combination with SGLT1, may become a novel predictive biomarker for laryngeal carcinoma.This work was supported by grants from the Spanish Ministry of Economy and Competitivity, ISCIII (Fis: PI12/00137, RTICC: RD12/0036/0028) co-funded by FEDER from Regional Development European Funds (European Union), Consejeria de Ciencia e Innovacion (CTS-1848) and Consejeria de Salud of the Junta de Andalucia (PI-0306-2012). This work has been also possible thanks to the Grant PIE13/0004 co-funded by the ISCIII and FEDER funds.Peer Reviewe

    Spinophilin loss correlates with poor patient prognosis in advanced stages of colon carcinoma

    Get PDF
    [Purpose+ The genomic region 17q21 is frequently associated with microsatellite instability and LOH in cancer, including gastric and colorectal carcinomas. This region contains several putative tumor suppressor genes, including Brca1, NM23, prohibitin, and spinophilin (Spn, PPP1R9B, neurabin II). The scaffold protein Spn is one of the regulatory subunits of phosphatase-1 (PP1) that targets PP1 to distinct subcellular locations and couples PP1 to its target. Thus, Spn may alter cell-cycle progression via the regulation of the phosphorylation status of the retinoblastoma protein, a direct target of PP1. Therefore, we analyzed whether Spn levels were reduced in colorectal carcinomas and whether Spn levels correlated with prognosis or response to therapy.[Experimental Design] By means of immunohistochemistry or quantitative PCR, we studied the levels of Spn in stages II, III, and IV colorectal carcinoma tumors and correlated to other clinicopathologic features as well as prognosis or response to therapy.[Results] Spn was lost in a percentage of human gastric, small intestine, and colorectal carcinomas. In patients with colorectal carcinoma, tumoral Spn downregulation correlated with a more aggressive histologic phenotype (poorer tumor differentiation and higher proliferative Ki67 index). Consistent with this observation, lower Spn protein expression levels were associated with faster relapse and poorer survival in patients with stage III colorectal carcinoma, particularly among those receiving adjuvant fluoropyrimidine therapy. We validated this result in an independent cohort of patients with metastatic colorectal carcinoma treated with standard chemotherapy. Although patients that achieved an objective tumor response exhibited Spn levels similar to nontumoral tissue, nonresponding patients showed a significant reduction in Spn mRNA levels.[Conclusions] Our data suggest that Spn downregulation contributes to a more aggressive biologic behavior, induces chemoresistance, and is associated with a poorer survival in patients with advanced stages of colorectal carcinoma. © 2013 American Association for Cancer Research.This work was supported by grants from the Spanish Ministry of Science and Innovation (SAF2009-08605), Fondo de Investigacion Sanitaria (PI12/00137), Consejeria de Ciencia e Innovacion, and Consejeria de Salud of the Junta de Andalucia (CTS-6844 and PI-0142). A. Carnero's laboratory is also funded by a fellowship from Fundacion Oncologica FERO. P. Estevez-Garcia and I. Lopez-Calderero are supported by Rio Ortega Fellowships and S. Molina-Pinelo is supported by a Sara Borrell fellowship. R. Garcia-Carbonero is funded by the Instituto de Salud Carlos III, Ministerio de Sanidad, Spain (PI 10.02164).Peer Reviewe
    corecore