3 research outputs found

    Inflationary and phase-transitional primordial magnetic fields in galaxy clusters

    Full text link
    Primordial magnetic fields (PMFs) are possible candidates for explaining the observed magnetic fields in galaxy clusters. Two competing scenarios of primordial magnetogenesis have been discussed in the literature: inflationary and phase-transitional. We study the amplification of both large- and small-scale correlated magnetic fields, corresponding to inflation- and phase transition-generated PMFs, in a massive galaxy cluster. We employ high-resolution magnetohydrodynamic cosmological zoom-in simulations to resolve the turbulent motions in the intracluster medium. We find that the turbulent amplification is more efficient for the large-scale inflationary models, while the phase transition-generated seed fields show moderate growth. The differences between the models are imprinted on the spectral characteristics of the field (such as the amplitude and the shape of the magnetic power spectrum) and therefore on the final correlation length. We find a one order of magnitude difference between the final strengths of the inflation- and phase transition-generated magnetic fields, and a factor of 1.5 difference between their final coherence scales. Thus, the final configuration of the magnetic field retains information about the PMF generation scenarios. Our findings have implications for future extragalactic Faraday rotation surveys with the possibility of distinguishing between different magnetogenesis scenarios.Comment: 21 pages, 13 figures, comments welcom

    Evolution of primordial magnetic fields during large-scale structure formation

    Full text link
    Primordial magnetic fields could explain the large-scale magnetic fields present in the Universe. Inflation and phase transitions in the early Universe could give rise to such fields with unique characteristics. We investigate the magneto-hydrodynamic evolution of these magnetogenesis scenarios with cosmological simulations. We evolve inflation-generated magnetic fields either as (i) uniform (homogeneous) or as (ii) scale-invariant stochastic fields, and phase transition-generated ones either as (iii) helical or as (iv) non-helical fields from the radiation-dominated epoch. We find that the final distribution of magnetic fields in the simulated cosmic web shows a dependence on the initial strength and the topology of the seed field. Thus, the observed field configuration retains information on the initial conditions at the moment of the field generation. If detected, primordial magnetic field observations would open a new window for indirect probes of the early universe. The differences between the competing models are revealed on the scale of galaxy clusters, bridges, as well as filaments and voids. The distinctive spectral evolution of different seed fields produces imprints on the correlation length today. We discuss how the differences between rotation measures from highly ionized regions can potentially be probed with forthcoming surveys.Comment: 26 pages, 17 figures, comments welcom

    Evolution of Primordial Magnetic Fields during Large-scale Structure Formation

    No full text
    Primordial magnetic fields (PMFs) could explain the large-scale magnetic fields present in the universe. Inflation and phase transitions in the early universe could give rise to such fields with unique characteristics. We investigate the magnetohydrodynamic evolution of these magnetogenesis scenarios with cosmological simulations. We evolve inflation-generated magnetic fields either as (i) uniform (homogeneous) or as (ii) scale-invariant stochastic fields, and phase-transition-generated ones either as (iii) helical or as (iv) nonhelical fields from the radiation-dominated epoch. We find that the final distribution of magnetic fields in the simulated cosmic web shows a dependence on the initial strength and the topology of the seed field. Thus, the observed field configuration retains information on the initial conditions at the moment of the field generation. If detected, PMF observations would open a new window for indirect probes of the early universe. The differences between the competing models are revealed on the scale of galaxy clusters, bridges, as well as filaments and voids. The distinctive spectral evolution of different seed fields produces imprints on the correlation length today. We discuss how the differences between rotation measures from highly ionized regions can potentially be probed with forthcoming surveys
    corecore