18 research outputs found

    Regional Frequency Analysis at Ungauged Sites with Multivariate Adaptive Regression Splines.

    Get PDF
    Hydrological systems are naturally complex and nonlinear. A large number of variables, many of which not yet well considered in regional frequency analysis (RFA), have a significant impact on hydrological dynamics and consequently on flood quantile estimates. Despite the increasing number of statistical tools used to estimate flood quantiles at ungauged sites, little attention has been dedicated to the development of new regional estimation (RE) models accounting for both nonlinear links and interactions between hydrological and physio-meteorological variables. The aim of this paper is to simultaneously take into account nonlinearity and interactions between variables by introducing the multivariate adaptive regression splines (MARS) approach in RFA. The predictive performances of MARS are compared with those obtained by one of the most robust RE models: the generalized additive model (GAM). Both approaches are applied to two datasets covering 151 hydrometric stations in the province of Quebec (Canada): a standard dataset (STA) containing commonly used variables and an extended dataset (EXTD) combining STA with additional variables dealing with drainage network characteristics. Results indicate that RE models using MARS with the EXTD outperform slightly RE models using GAM. Thus, MARS seems to allow for a better representation of the hydrological process and an increased predictive power in RFA

    Alteration of Proteins and Pigments Influence the Function of Photosystem I under Iron Deficiency from Chlamydomonas reinhardtii

    Get PDF
    BACKGROUND: Iron is an essential micronutrient for all organisms because it is a component of enzyme cofactors that catalyze redox reactions in fundamental metabolic processes. Even though iron is abundant on earth, it is often present in the insoluble ferric [Fe (III)] state, leaving many surface environments Fe-limited. The haploid green alga Chlamydomonas reinhardtii is used as a model organism for studying eukaryotic photosynthesis. This study explores structural and functional changes in PSI-LHCI supercomplexes under Fe deficiency as the eukaryotic photosynthetic apparatus adapts to Fe deficiency. RESULTS: 77K emission spectra and sucrose density gradient data show that PSI and LHCI subunits are affected under iron deficiency conditions. The visible circular dichroism (CD) spectra associated with strongly-coupled chlorophyll dimers increases in intensity. The change in CD signals of pigments originates from the modification of interactions between pigment molecules. Evidence from sucrose gradients and non-denaturing (green) gels indicates that PSI-LHCI levels were reduced after cells were grown for 72 h in Fe-deficient medium. Ultrafast fluorescence spectroscopy suggests that red-shifted pigments in the PSI-LHCI antenna were lost during Fe stress. Further, denaturing gel electrophoresis and immunoblot analysis reveals that levels of the PSI subunits PsaC and PsaD decreased, while PsaE was completely absent after Fe stress. The light harvesting complexes were also susceptible to iron deficiency, with Lhca1 and Lhca9 showing the most dramatic decreases. These changes in the number and composition of PSI-LHCI supercomplexes may be caused by reactive oxygen species, which increase under Fe deficiency conditions. CONCLUSIONS: Fe deficiency induces rapid reduction of the levels of photosynthetic pigments due to a decrease in chlorophyll synthesis. Chlorophyll is important not only as a light-harvesting pigment, but also has a structural role, particularly in the pigment-rich LHCI subunits. The reduced level of chlorophyll molecules inhibits the formation of large PSI-LHCI supercomplexes, further decreasing the photosynthetic efficiency

    Evaluation of additional physiographical variables characterising drainage network systems in regional frequency analysis, a Quebec watersheds case-study

    No full text
    Regional Frequency Analysis (RFA) relies on a wide range of physiographical and meteorological variables to estimate hydrological quantiles at ungauged sites. However, additional catchment characteristics related to its drainage network are not yet fully understood and integrated in RFA procedures. The aim of the present paper is to propose the integration of several physiographical variables characterizing the drainage network systems in RFA, and to evaluate their added value in predicting quantiles at ungauged sites. The proposed extended dataset (EXTD) includes several variables characterising drainage network characteristics. To evaluate the new variables, a number of commonly used RFA approaches are applied to the extended data representing 151 stations in Quebec (Canada) and compared to a standard dataset (STA) that excludes the new variables. The considered RFA approaches include the combination of two neighborhood methods namely the canonical correlation analysis (CCA) and the region of influence (ROI) with two regional estimation (RE) models which are the log-linear regression model (LLRM) and the generalized additive model (GAM). The RE models are also applied without the hydrological neighborhood. Results show that regional models using the extended dataset lead to significantly better flood quantile predictions, especially for large basins. Indeed, the variable selection performed with EXTD consistently includes some of the new variables, in particular the drainage density, the stream length ratio, and the ruggedness number. Two other new variables are also identified and included in the DHR step: the circularity ratio and the texture ratio. This leads to better predictions with relative errors about 29% for EXTD, versus around 42% for STA in the case of the best combination of RFA approaches. Thus, the proposed new variables allow for a better representation of the physical dynamics within the watersheds
    corecore