5 research outputs found
Abiotic Stress Responses in Photosynthetic Organisms
Cellular and molecular aspects of abiotic stress responses in Arabidopsis thaliana subjected to cold, drought, and high salinity and in two photosynthetic green alga, Chlamydomonas reinhardtii and Coccomyxa sp. C-169, subjected to nitrogen deprivation were investigated. Cold, drought, and high salinity can negatively affect plant growth and crop production. The first research aimed at determining the physiological functions of the stress-responsive Arabidopsis thaliana RD29A and RD29B genes. Cold, drought, and salt induced both genes; the promoter of RD29Awas found to be more responsive to drought and cold stresses, whereas the promoter of RD29B was highly responsive to salt stress. Therefore, RD29A and RD29B gene sequences have the potential to confer abiotic stress resistance in crop species grown in arid and semi-arid regions. RD29A and RD29B proteins were also found to unlikely serve directly as protective molecules. The second study aimed at investigating the impacts of nitrogen deprivation in Chlamydomonas reinhardtii and Coccomyxa sp. C-169; results showed that these microalgae altered their lipid metabolism by synthesizing and accumulating the neutral lipid triacylglycerol (TAG). Since microalgae have emerged as suitable feedstocks for renewable biofuel production, the purpose of this analysis was to understand the genetic and biochemical mechanisms associated with the induction of TAG synthesis in Chlamydomonas and Coccomyxa subjected to nitrogen deprivation under photoautotrophic conditions. In addition to TAG accumulation, nitrogen depletion triggered an early synthesis of starch and up-regulation of several genes in Chlamydomonas, including some diacylglycerol:acyl-CoA acyltransferases, catalyzing the acylation of diacylglycerol to TAG. Protein degradation in nitrogen-deprived cells might provide carbon skeletons for TAG biosynthesis. In a related study, the effects of the autophagy-inducer rapamycin and the autophagy-inhibitor 3-methyladenine (3-MA) on the accumulation of TAG in Chlamydomonas cells subjected to nitrogen deprivation were investigated. 3-MA induced TAG accumulation in cells growing in both nitrogen-deprived and control media. The increase in TAG content in cells subjected to nitrogen deprivation might not be a direct response to an autophagic activity induced by nutrient depletion.
Advisor: Tala N. Awad
Phytochrome and Phytohormones: Working in Tandem for Plant Growth and Development
Being sessile organisms, plants need to continually adapt and modulate their rate of growth and development in accordance with the changing environmental conditions, a phenomenon referred to as plasticity. Plasticity in plants is a highly complex process that involves a well-coordinated interaction between different signaling pathways, the spatiotemporal involvement of phytohormones and cues from the environment. Though research studies are being carried out over the years to understand how plants perceive the signals from changing environmental conditions and activate plasticity, such remain a mystery to be resolved. Among all environmental cues, the light seems to be the stand out factor influencing plant growth and development. During the course of evolution, plants have developed well-equipped signaling system that enables regulation of both quantitative and qualitative differences in the amount of perceived light. Light influences essential developmental switches in plants ranging from germination or transition to flowering, photomorphogenesis, as well as switches in response to shade avoidances and architectural changes occurring during phototropism. Abscisic acid (ABA) is controlling seed germination and is regulated by light. Furthermore, circadian clock adds another level of regulation to plant growth by integrating light signals with different hormonal pathways. MYB96 has been identified as a regulator of circadian gating of ABA-mediated responses in plants by binding to the TIMING OF CAB EXPRESSION 1(TOC1) promoter. This review will present a representative regulatory model, highlight the successes achieved in employing novel strategies to dissect the levels of interaction and provide perspective for future research on phytochrome-phytohormones relationships toward facilitating plant growth, development, and function under abiotic-biotic stresses
Metabolic and Gene Expression Changes Triggered by Nitrogen Deprivation in the Photoautotrophically Grown Microalgae \u3ci\u3eChlamydomonas reinhardtii\u3c/i\u3e and \u3ci\u3eCoccomyxa\u3c/i\u3e sp. C-169
Microalgae are emerging as suitable feedstocks for renewable biofuel production. Characterizing the metabolic pathways involved in the biosynthesis of energy-rich compounds, such as lipids and carbohydrates, and the environmental factors influencing their accumulation is necessary to realize the full potential of these organisms as energy resources. The model green alga Chlamydomonas reinhardtii accumulates significant amounts of triacylglycerols (TAGs) under nitrogen starvation or salt stress in medium containing acetate. However, since cultivation of microalgae for biofuel production may need to rely on sunlight as the main source of energy for biomass synthesis, metabolic and gene expression changes occurring in Chlamydomonas and Coccomyxa subjected to nitrogen deprivation were examined under strictly photoautotrophic conditions. Interestingly, nutrient depletion triggered a similar pattern of early synthesis of starch followed by substantial TAG accumulation in both of these fairly divergent green microalgae. A marked decrease in chlorophyll and protein contents was also observed, including reduction in ribosomal polypeptides and some key enzymes for CO2 assimilation like ribulose-1,5-bisphosphate carboxylase/oxygenase. These results suggest that turnover of nitrogen-rich compounds such as proteins may provide carbon/energy for TAG biosynthesis in the nutrient deprived cells. In Chlamydomonas, several genes coding for diacylglycerol:acyl-CoA acyltransferases, catalyzing the acylation of diacylglycerol to TAG, displayed increased transcript abundance under nitrogen depletion but, counterintuitively, genes encoding enzymes for de novo fatty acid synthesis, such as 3-ketoacyl-ACP synthase I, were down-regulated. Understanding the interdependence of these anabolic and catabolic processes and their regulation may allow the engineering of algal strains with improved capacity to convert their biomass into useful biofuel precursors
Ecophysiological responses of native invasive woody \u3ci\u3eJuniperus virginiana\u3c/i\u3e L. to resource availability and stand characteristics in the semiarid grasslands of the Nebraska Sandhills
Vegetation in grasslands is changing at an unprecedented rate. In the Nebraska Sandhills, this shift is attributed in part to encroachment of the woody species Juniperus virginiana. We investigated changes in resource availability and their feedback on seasonal trends in photosynthetic characteristics of J. virginiana trees scattered in open grasslands vs. a dense 57-year-old stand. Dense stand exhibited lower volumetric soil water content, NH4 +, NO3 –, and δ13C, as well as foliage δ13C, δ15N, and N content, compared to grasslands. Water potential was higher in trees in grasslands compared to dense stand. J. virginiana in dense stand exhibited similar trends to trees in grasslands for net photosynthetic rate (PN), stomatal conductance, transpiration, maximum photochemical efficiency of PSII, maximum carboxylation velocity, and maximum rate of electron transport. PN peaked early summer and declined in the fall, with trees in open grasslands lagging behind those in dense stand. Plasticity of this species may place it at a competitive advantage in the Sandhills, further altering grasslands vegetation and ecosystem processes