766 research outputs found

    Repositioning forward-leaning passengers by seatbelt pre-pretensioning

    Get PDF
    Objective: The study determined the seatbelt pre-pretensioner force needed and the time required to reposition average male front-seat passengers from forward-leaning to upright using finite element simulations of the Active SAFER Human Body Model (Active SHBM). Methods: The Active SHBM was positioned in an initial forward-leaning position (29\ub0 forward from upright) on a deformable vehicle seat. A pre-pretensioner was modeled as a pre-loaded spring and its ability to reposition the forward-leaning Active SHBM to an upright position was simulated for twenty-four different pre-crash conditions. Four parameters were varied: (1) Automated Emergency Braking (AEB) active with 11 m/s2 or no AEB, (2) type of seatbelt system: Belt-In-Seat or B-pillar, (3) pre-pretensioner activation time (200 ms before, 100 ms before, or at the same time as AEB ramp-up), and (4) pre-pretensioner force (200 N, 300 N, 400 N, 600 N). The first thoracic vertebra fore-aft (T1 X) trajectories were compared against a reference upright position to determine the force and time needed to reposition and the effectiveness of repositioning in the different conditions. Results: The lowest force enabling repositioning in all simulations was 400 N (no AEB, Belt-In-Seat). It took about 350 ms. In the presence of AEB, activating the pre-pretensioner 200 ms before AEB and using 600 N pre-pretensioner force was needed for repositioning (taking 200 ms with Belt-In-Seat and 260 ms with B-pillar installations). Repositioning was faster and thus more effective with the Belt-In-Seat seatbelt in all simulations. Conclusions: All four parameters (presence of AEB, type of seatbelt system, pre-pretensioner activation time and force) affected the repositioning ability and time required. Far from all combinations repositioned a forward-leaning average male occupant model, but those found to be effective and fast appear as a feasible option for vehicle safety systems to reposition out-of-position occupants during pre-crash events

    Do We Really Need Another Meeting? The Science of Workplace Meetings

    Get PDF
    Meetings are routine in organizations, but their value is often questioned by the employees who must sit through them daily. The science of meetings that has emerged as of late provides necessary direction toward improving meetings, but an evaluation of the current state of the science is much needed. In this review, we examine current directions for the psychological science of workplace meetings, with a focus on applying scientific findings about the activities that occur before, during, and after meetings that facilitate success. We conclude with concrete recommendations and a checklist for promoting good meetings, as well as some thoughts on the future of the science of workplace meetings
    • …
    corecore